scholarly journals Property-Driven State-Space Coarsening for Continuous Time Markov Chains

Author(s):  
Michalis Michaelides ◽  
Dimitrios Milios ◽  
Jane Hillston ◽  
Guido Sanguinetti
Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 253 ◽  
Author(s):  
Alexander Zeifman ◽  
Victor Korolev ◽  
Yacov Satin

This paper is largely a review. It considers two main methods used to study stability and to obtain appropriate quantitative estimates of perturbations of (inhomogeneous) Markov chains with continuous time and a finite or countable state space. An approach is described to the construction of perturbation estimates for the main five classes of such chains associated with queuing models. Several specific models are considered for which the limit characteristics and perturbation bounds for admissible “perturbed” processes are calculated.


1989 ◽  
Vol 26 (3) ◽  
pp. 643-648 ◽  
Author(s):  
A. I. Zeifman

We consider a non-homogeneous continuous-time Markov chain X(t) with countable state space. Definitions of uniform and strong quasi-ergodicity are introduced. The forward Kolmogorov system for X(t) is considered as a differential equation in the space of sequences l1. Sufficient conditions for uniform quasi-ergodicity are deduced from this equation. We consider conditions of uniform and strong ergodicity in the case of proportional intensities.


2002 ◽  
Vol 39 (01) ◽  
pp. 197-212 ◽  
Author(s):  
F. Javier López ◽  
Gerardo Sanz

Let (X t ) and (Y t ) be continuous-time Markov chains with countable state spaces E and F and let K be an arbitrary subset of E x F. We give necessary and sufficient conditions on the transition rates of (X t ) and (Y t ) for the existence of a coupling which stays in K. We also show that when such a coupling exists, it can be chosen to be Markovian and give a way to construct it. In the case E=F and K ⊆ E x E, we see how the problem of construction of the coupling can be simplified. We give some examples of use and application of our results, including a new concept of lumpability in Markov chains.


2002 ◽  
Vol 39 (4) ◽  
pp. 901-904 ◽  
Author(s):  
P. K. Pollett ◽  
V. T. Stefanov

This note presents a method of evaluating the distribution of a path integral for Markov chains on a countable state space.


2002 ◽  
Vol 39 (1) ◽  
pp. 197-212 ◽  
Author(s):  
F. Javier López ◽  
Gerardo Sanz

Let (Xt) and (Yt) be continuous-time Markov chains with countable state spaces E and F and let K be an arbitrary subset of E x F. We give necessary and sufficient conditions on the transition rates of (Xt) and (Yt) for the existence of a coupling which stays in K. We also show that when such a coupling exists, it can be chosen to be Markovian and give a way to construct it. In the case E=F and K ⊆ E x E, we see how the problem of construction of the coupling can be simplified. We give some examples of use and application of our results, including a new concept of lumpability in Markov chains.


1989 ◽  
Vol 26 (03) ◽  
pp. 643-648 ◽  
Author(s):  
A. I. Zeifman

We consider a non-homogeneous continuous-time Markov chain X(t) with countable state space. Definitions of uniform and strong quasi-ergodicity are introduced. The forward Kolmogorov system for X(t) is considered as a differential equation in the space of sequences l 1 . Sufficient conditions for uniform quasi-ergodicity are deduced from this equation. We consider conditions of uniform and strong ergodicity in the case of proportional intensities.


2002 ◽  
Vol 39 (04) ◽  
pp. 901-904 ◽  
Author(s):  
P. K. Pollett ◽  
V. T. Stefanov

This note presents a method of evaluating the distribution of a path integral for Markov chains on a countable state space.


1998 ◽  
Vol 35 (04) ◽  
pp. 812-823 ◽  
Author(s):  
D. M. Walker

This paper considers continuous-time Markov chains whose state space consists of an irreducible class, 𝒞, and an absorbing state which is accessible from 𝒞. The purpose is to provide a way to determine the expected time to absorption conditional on such time being finite, in the case where absorption occurs with probability less than 1. The results are illustrated by applications to the general birth and death process and the linear birth, death and catastrophe process.


Sign in / Sign up

Export Citation Format

Share Document