The expected time until absorption when absorption is not certain

1998 ◽  
Vol 35 (04) ◽  
pp. 812-823 ◽  
Author(s):  
D. M. Walker

This paper considers continuous-time Markov chains whose state space consists of an irreducible class, 𝒞, and an absorbing state which is accessible from 𝒞. The purpose is to provide a way to determine the expected time to absorption conditional on such time being finite, in the case where absorption occurs with probability less than 1. The results are illustrated by applications to the general birth and death process and the linear birth, death and catastrophe process.

1998 ◽  
Vol 35 (4) ◽  
pp. 812-823 ◽  
Author(s):  
D. M. Walker

This paper considers continuous-time Markov chains whose state space consists of an irreducible class, 𝒞, and an absorbing state which is accessible from 𝒞. The purpose is to provide a way to determine the expected time to absorption conditional on such time being finite, in the case where absorption occurs with probability less than 1. The results are illustrated by applications to the general birth and death process and the linear birth, death and catastrophe process.


2018 ◽  
Vol 55 (4) ◽  
pp. 1025-1036 ◽  
Author(s):  
Dario Bini ◽  
Jeffrey J. Hunter ◽  
Guy Latouche ◽  
Beatrice Meini ◽  
Peter Taylor

Abstract In their 1960 book on finite Markov chains, Kemeny and Snell established that a certain sum is invariant. The value of this sum has become known as Kemeny’s constant. Various proofs have been given over time, some more technical than others. We give here a very simple physical justification, which extends without a hitch to continuous-time Markov chains on a finite state space. For Markov chains with denumerably infinite state space, the constant may be infinite and even if it is finite, there is no guarantee that the physical argument will hold. We show that the physical interpretation does go through for the special case of a birth-and-death process with a finite value of Kemeny’s constant.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 253 ◽  
Author(s):  
Alexander Zeifman ◽  
Victor Korolev ◽  
Yacov Satin

This paper is largely a review. It considers two main methods used to study stability and to obtain appropriate quantitative estimates of perturbations of (inhomogeneous) Markov chains with continuous time and a finite or countable state space. An approach is described to the construction of perturbation estimates for the main five classes of such chains associated with queuing models. Several specific models are considered for which the limit characteristics and perturbation bounds for admissible “perturbed” processes are calculated.


1998 ◽  
Vol 35 (3) ◽  
pp. 545-556 ◽  
Author(s):  
Masaaki Kijima

A continuous-time Markov chain on the non-negative integers is called skip-free to the right (left) if only unit increments to the right (left) are permitted. If a Markov chain is skip-free both to the right and to the left, it is called a birth–death process. Karlin and McGregor (1959) showed that if a continuous-time Markov chain is monotone in the sense of likelihood ratio ordering then it must be an (extended) birth–death process. This paper proves that if an irreducible Markov chain in continuous time is monotone in the sense of hazard rate (reversed hazard rate) ordering then it must be skip-free to the right (left). A birth–death process is then characterized as a continuous-time Markov chain that is monotone in the sense of both hazard rate and reversed hazard rate orderings. As an application, the first-passage-time distributions of such Markov chains are also studied.


1989 ◽  
Vol 26 (3) ◽  
pp. 643-648 ◽  
Author(s):  
A. I. Zeifman

We consider a non-homogeneous continuous-time Markov chain X(t) with countable state space. Definitions of uniform and strong quasi-ergodicity are introduced. The forward Kolmogorov system for X(t) is considered as a differential equation in the space of sequences l1. Sufficient conditions for uniform quasi-ergodicity are deduced from this equation. We consider conditions of uniform and strong ergodicity in the case of proportional intensities.


2005 ◽  
Vol 42 (1) ◽  
pp. 52-60 ◽  
Author(s):  
Fátima Ferreira ◽  
António Pacheco

As proposed by Irle and Gani in 2001, a process X is said to be slower in level crossing than a process Y if it takes X stochastically longer to exceed any given level than it does Y. In this paper, we extend a result of Irle (2003), relative to the level crossing ordering of uniformizable skip-free-to-the-right continuous-time Markov chains, to derive a new set of sufficient conditions for the level crossing ordering of these processes. We apply our findings to birth-death processes with and without catastrophes, and M/M/s/c systems.


2002 ◽  
Vol 39 (01) ◽  
pp. 197-212 ◽  
Author(s):  
F. Javier López ◽  
Gerardo Sanz

Let (X t ) and (Y t ) be continuous-time Markov chains with countable state spaces E and F and let K be an arbitrary subset of E x F. We give necessary and sufficient conditions on the transition rates of (X t ) and (Y t ) for the existence of a coupling which stays in K. We also show that when such a coupling exists, it can be chosen to be Markovian and give a way to construct it. In the case E=F and K ⊆ E x E, we see how the problem of construction of the coupling can be simplified. We give some examples of use and application of our results, including a new concept of lumpability in Markov chains.


Sign in / Sign up

Export Citation Format

Share Document