A Conjugate Gradient-Based Efficient Algorithm for Training Single-Hidden-Layer Neural Networks

Author(s):  
Xiaoling Gong ◽  
Jian Wang ◽  
Yanjiang Wang ◽  
Jacek M. Zurada
2020 ◽  
Vol 9 (1) ◽  
pp. 41-49
Author(s):  
Johanes Roisa Prabowo ◽  
Rukun Santoso ◽  
Hasbi Yasin

House is one aspect of the welfare of society that must be met, because house is the main need for human life besides clothing and food. The condition of the house as a good shelter can be known from the structure and facilities of buildings. This research aims to analyze the classification of house conditions is livable or not livable. The method used is artificial neural networks (ANN). ANN is a system information processing that has characteristics similar to biological neural networks. In this research the optimization method used is the conjugate gradient algorithm. The data used are data of Survei Sosial Ekonomi Nasional (Susenas) March 2018 Kor Keterangan Perumahan for Cilacap Regency. The data is divided into training data and testing data with the proportion that gives the highest average accuracy is 90% for training data and 10% for testing data. The best architecture obtained a model consisting of 8 neurons in input layer, 10 neurons in hidden layer and 1 neuron in output layer. The activation function used are bipolar sigmoid in the hidden layer and binary sigmoid in the output layer. The results of the analysis showed that ANN works very well for classification on house conditions in Cilacap Regency with an average accuracy of 98.96% at the training stage and 97.58% at the testing stage.Keywords: House, Classification, Artificial Neural Networks, Conjugate Gradient


2019 ◽  
Vol 115 ◽  
pp. 50-64 ◽  
Author(s):  
Bingjie Zhang ◽  
Yusong Liu ◽  
Jinde Cao ◽  
Shujun Wu ◽  
Jian Wang

2019 ◽  
Vol 12 (3) ◽  
pp. 156-161 ◽  
Author(s):  
Aman Dureja ◽  
Payal Pahwa

Background: In making the deep neural network, activation functions play an important role. But the choice of activation functions also affects the network in term of optimization and to retrieve the better results. Several activation functions have been introduced in machine learning for many practical applications. But which activation function should use at hidden layer of deep neural networks was not identified. Objective: The primary objective of this analysis was to describe which activation function must be used at hidden layers for deep neural networks to solve complex non-linear problems. Methods: The configuration for this comparative model was used by using the datasets of 2 classes (Cat/Dog). The number of Convolutional layer used in this network was 3 and the pooling layer was also introduced after each layer of CNN layer. The total of the dataset was divided into the two parts. The first 8000 images were mainly used for training the network and the next 2000 images were used for testing the network. Results: The experimental comparison was done by analyzing the network by taking different activation functions on each layer of CNN network. The validation error and accuracy on Cat/Dog dataset were analyzed using activation functions (ReLU, Tanh, Selu, PRelu, Elu) at number of hidden layers. Overall the Relu gave best performance with the validation loss at 25th Epoch 0.3912 and validation accuracy at 25th Epoch 0.8320. Conclusion: It is found that a CNN model with ReLU hidden layers (3 hidden layers here) gives best results and improve overall performance better in term of accuracy and speed. These advantages of ReLU in CNN at number of hidden layers are helpful to effectively and fast retrieval of images from the databases.


Author(s):  
Volodymyr Shymkovych ◽  
Sergii Telenyk ◽  
Petro Kravets

AbstractThis article introduces a method for realizing the Gaussian activation function of radial-basis (RBF) neural networks with their hardware implementation on field-programmable gaits area (FPGAs). The results of modeling of the Gaussian function on FPGA chips of different families have been presented. RBF neural networks of various topologies have been synthesized and investigated. The hardware component implemented by this algorithm is an RBF neural network with four neurons of the latent layer and one neuron with a sigmoid activation function on an FPGA using 16-bit numbers with a fixed point, which took 1193 logic matrix gate (LUTs—LookUpTable). Each hidden layer neuron of the RBF network is designed on an FPGA as a separate computing unit. The speed as a total delay of the combination scheme of the block RBF network was 101.579 ns. The implementation of the Gaussian activation functions of the hidden layer of the RBF network occupies 106 LUTs, and the speed of the Gaussian activation functions is 29.33 ns. The absolute error is ± 0.005. The Spartan 3 family of chips for modeling has been used to get these results. Modeling on chips of other series has been also introduced in the article. RBF neural networks of various topologies have been synthesized and investigated. Hardware implementation of RBF neural networks with such speed allows them to be used in real-time control systems for high-speed objects.


Author(s):  
Serkan Kiranyaz ◽  
Junaid Malik ◽  
Habib Ben Abdallah ◽  
Turker Ince ◽  
Alexandros Iosifidis ◽  
...  

AbstractThe recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs) that are homogenous only with a linear neuron model. As a heterogenous network model, ONNs are based on a generalized neuron model that can encapsulate any set of non-linear operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. However, the default search method to find optimal operators in ONNs, the so-called Greedy Iterative Search (GIS) method, usually takes several training sessions to find a single operator set per layer. This is not only computationally demanding, also the network heterogeneity is limited since the same set of operators will then be used for all neurons in each layer. To address this deficiency and exploit a superior level of heterogeneity, in this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the “Synaptic Plasticity” paradigm that poses the essential learning theory in biological neurons. During training, each operator set in the library can be evaluated by their synaptic plasticity level, ranked from the worst to the best, and an “elite” ONN can then be configured using the top-ranked operator sets found at each hidden layer. Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs and as a result, the performance gap over the CNNs further widens.


2020 ◽  
Vol 8 (4) ◽  
pp. 469
Author(s):  
I Gusti Ngurah Alit Indrawan ◽  
I Made Widiartha

Artificial Neural Networks or commonly abbreviated as ANN is one branch of science from the field of artificial intelligence which is often used to solve various problems in fields that involve grouping and pattern recognition. This research aims to classify Letter Recognition datasets using Artificial Neural Networks which are weighted optimally using the Artificial Bee Colony algorithm. The best classification accuracy results from this study were 92.85% using a combination of 4 hidden layers with each hidden layer containing 10 neurons.


Sign in / Sign up

Export Citation Format

Share Document