Viewpoint Estimation for Objects with Convolutional Neural Network Trained on Synthetic Images

Author(s):  
Yumeng Wang ◽  
Shuyang Li ◽  
Mengyao Jia ◽  
Wei Liang
2021 ◽  
Vol 38 (1) ◽  
pp. 61-71
Author(s):  
Xianrong Zhang ◽  
Gang Chen

Facing the image detection of dense small rigid targets, the main bottleneck of convolutional neural network (CNN)-based algorithms is the lack of massive correctly labeled training images. To make up for the lack, this paper proposes an automatic end-to-end synthesis algorithm to generate a huge amount of labeled training samples. The synthetic image set was adopted to train the network progressively and iteratively, realizing the detection of dense small rigid targets based on the CNN and synthetic images. Specifically, the standard images of the target classes and the typical background mages were imported, and the color, brightness, position, orientation, and perspective of real images were simulated by image processing algorithm, creating a sufficiently large initial training set with correctly labeled images. Then, the network was preliminarily trained on this set. After that, a few real images were compiled into the test set. Taking the missed and incorrectly detected target images as inputs, the initial training set was progressively expanded, and then used to iteratively train the network. The results show that our method can automatically generate a training set that fully substitutes manually labeled dataset for network training, eliminating the dependence on massive manually labeled images. The research opens a new way to implement the tasks similar to the detection of dense small rigid targets, and provides a good reference for solving similar problems through deep learning (DL).


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document