Centralizers of Nilpotent Elements and Related Problems, a Survey

Author(s):  
Anne Moreau
Keyword(s):  
2019 ◽  
Vol 56 (2) ◽  
pp. 252-259
Author(s):  
Ebrahim Hashemi ◽  
Fatemeh Shokuhifar ◽  
Abdollah Alhevaz

Abstract The intersection of all maximal right ideals of a near-ring N is called the quasi-radical of N. In this paper, first we show that the quasi-radical of the zero-symmetric near-ring of polynomials R0[x] equals to the set of all nilpotent elements of R0[x], when R is a commutative ring with Nil (R)2 = 0. Then we show that the quasi-radical of R0[x] is a subset of the intersection of all maximal left ideals of R0[x]. Also, we give an example to show that for some commutative ring R the quasi-radical of R0[x] coincides with the intersection of all maximal left ideals of R0[x]. Moreover, we prove that the quasi-radical of R0[x] is the greatest quasi-regular (right) ideal of it.


2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.


1983 ◽  
Vol 6 (1) ◽  
pp. 119-124
Author(s):  
Hazar Abu-Khuzam ◽  
Adil Yaqub

LetRbe a ring and letNdenote the set of nilpotent elements ofR. LetZdenote the center ofR. Suppose that (i)Nis commutative, (ii) for everyxinRthere existsx′ϵ<x>such thatx−x2x′ϵN, where<x>denotes the subring generated byx, (iii) for everyx,yinR, there exists an integern=n(x,y)≥1such that both(xy)n−(yx)nand(xy)n+1−(yx)n+1belong toZ. ThenRis commutative and, in fact,Ris isomorphic to a subdirect sum of nil commutative rings and local commutative rings. It is further shown that both conditions in hypothesis (iii) are essential. The proof uses the structure theory of rings along with some earlier results of the authors.


2020 ◽  
Vol 9 (2) ◽  
pp. 80-92
Author(s):  
Chenar Abdul Kareem Ahmed

T.K. Kwak and Y. Lee called a ring R satisfy the commutativity of nilpotent elements at zero[1] if ab = 0 for a, b ∈ N(R) implies ba = 0. For simplicity, a ring R is called CNZ if it satisfies the commutativity of nilpotent elements at zero. In this paper we study an extension of a CNZ ring with its endomorphism. An endomorphism α of a ring R is called strong right ( resp., left) CNZ if whenever aα(b) = 0(resp., α(a)b = 0 ) for a, b ∈ N(R) ba = 0. A ring R is called strong right (resp., left) α-CNZ if there exists a strong right (resp., left) CNZ endomorphism α of R, and the ring R is called strong α- CNZ if R is both strong left and right α- CNZ. Characterization of strong α- CNZ rings and their related properties including extensions are investigated . In particular, it’s shown that a ring R is reduced if and only if U2(R) is a CNZ ring. Furthermore extensions of strong α- CNZ rings are studied.


Author(s):  
Abdullah Harmanci ◽  
Handan Kose ◽  
Yosum Kurtulmaz ◽  
Burcu Ungor
Keyword(s):  

2011 ◽  
Vol 21 (05) ◽  
pp. 745-762 ◽  
Author(s):  
TAI KEUN KWAK ◽  
YANG LEE

Antoine studied conditions which are connected to the question of Amitsur of whether or not a polynomial ring over a nil ring is nil, observing the structure of nilpotent elements in Armendariz rings and introducing the notion of nil-Armendariz rings. The class of nil-Armendariz rings contains Armendariz rings and NI rings. We continue the study of nil-Armendariz rings, concentrating on the structure of rings over which coefficients of nilpotent polynomials are nilpotent. In the procedure we introduce the notion of CN-rings that is a generalization of nil-Armendariz rings. We first construct a CN-ring but not nil-Armendariz. This may be a base on which Antoine's theory can be applied and elaborated. We investigate basic ring theoretic properties of CN-rings, and observe various kinds of CN-rings including ordinary ring extensions. It is shown that a ring R is CN if and only if R is nil-Armendariz if and only if R is Armendariz if and only if R is reduced when R is a von Neumann regular ring.


Sign in / Sign up

Export Citation Format

Share Document