The Weakly Nilpotent Graph of a Commutative Ring

2017 ◽  
Vol 60 (2) ◽  
pp. 319-328
Author(s):  
Soheila Khojasteh ◽  
Mohammad Javad Nikmehr

AbstractLet R be a commutative ring with non-zero identity. In this paper, we introduce theweakly nilpotent graph of a commutative ring. The weakly nilpotent graph of R denoted by Γw(R) is a graph with the vertex set R* and two vertices x and y are adjacent if and only if x y ∊ N(R)*, where R* = R \ {0} and N(R)* is the set of all non-zero nilpotent elements of R. In this article, we determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the chromatic number, and the independence number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings, we determine diam . Finally, we characterize all commutative rings R for which is a cycle, where is the complement of the weakly nilpotent graph of R.

2014 ◽  
Vol 21 (02) ◽  
pp. 249-256 ◽  
Author(s):  
G. Aalipour ◽  
S. Akbari ◽  
M. Behboodi ◽  
R. Nikandish ◽  
M. J. Nikmehr ◽  
...  

Let R be a commutative ring and 𝔸(R) be the set of ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸(R)* = 𝔸(R)\{(0)} and two distinct vertices I and J are adjacent if and only if IJ = (0). Here, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. It is shown that if R is an Artinian ring and ω (𝔸𝔾(R)) = 2, then R is Gorenstein. Also, we investigate commutative rings whose annihilating-ideal graphs are complete or bipartite.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250199 ◽  
Author(s):  
T. ASIR ◽  
T. TAMIZH CHELVAM

The intersection graph ITΓ(R) of gamma sets in the total graph TΓ(R) of a commutative ring R, is the undirected graph with vertex set as the collection of all γ-sets in the total graph of R and two distinct vertices u and v are adjacent if and only if u ∩ v ≠ ∅. Tamizh Chelvam and Asir [The intersection graph of gamma sets in the total graph I, to appear in J. Algebra Appl.] studied about ITΓ(R) where R is a commutative Artin ring. In this paper, we continue our interest on ITΓ(R) and actually we study about Eulerian, Hamiltonian and pancyclic nature of ITΓ(R). Further, we focus on certain graph theoretic parameters of ITΓ(R) like the independence number, the clique number and the connectivity of ITΓ(R). Also, we obtain both vertex and edge chromatic numbers of ITΓ(R). In fact, it is proved that if R is a finite commutative ring, then χ(ITΓ(R)) = ω(ITΓ(R)). Having proved that ITΓ(R) is weakly perfect for all finite commutative rings, we further characterize all finite commutative rings for which ITΓ(R) is perfect. In this sequel, we characterize all commutative Artin rings for which ITΓ(R) is of class one (i.e. χ′(ITΓ(R)) = Δ(ITΓ(R))). Finally, it is proved that the vertex connectivity and edge connectivity of ITΓ(R) are equal to the degree of any vertex in ITΓ(R).


2012 ◽  
Vol 12 (03) ◽  
pp. 1250179 ◽  
Author(s):  
A. AZIMI ◽  
A. ERFANIAN ◽  
M. FARROKHI D. G.

Let R be a commutative ring with nonzero identity. Then the Jacobson graph of R, denoted by 𝔍R, is defined as a graph with vertex set R\J(R) such that two distinct vertices x and y are adjacent if and only if 1 - xy is not a unit of R. We obtain some graph theoretical properties of 𝔍R including its connectivity, planarity and perfectness and we compute some of its numerical invariants, namely diameter, girth, dominating number, independence number and vertex chromatic number and give an estimate for its edge chromatic number.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750132 ◽  
Author(s):  
M. J. Nikmehr ◽  
R. Nikandish ◽  
M. Bakhtyiari

Let [Formula: see text] be a commutative ring with identity, and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text], and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if ann[Formula: see text] is an essential ideal. It is proved that [Formula: see text] is connected with diameter at most three and with girth at most four, if [Formula: see text] contains a cycle. Furthermore, rings with complete or star essential graphs are characterized. Also, we study the affinity between essential graph and zero-divisor graph that is associated with a ring. Finally, we show that the essential graph associated with an Artinian ring is weakly perfect, i.e. its vertex chromatic number equals its clique number.


2015 ◽  
Vol 14 (06) ◽  
pp. 1550079 ◽  
Author(s):  
M. J. Nikmehr ◽  
S. Khojasteh

Let R be a commutative ring with identity, I its proper ideal and M be a unitary R-module. In this paper, we introduce and study a kind of graph structure of an R-module M with respect to proper ideal I, denoted by ΓI(RM) or simply ΓI(M). It is the (undirected) graph with the vertex set M\{0} and two distinct vertices x and y are adjacent if and only if [x : M][y : M] ⊆ I. Clearly, the zero-divisor graph of R is a subgraph of Γ0(R); this is an important result on the definition. We prove that if ann R(M) ⊆ I and H is the subgraph of ΓI(M) induced by the set of all non-isolated vertices, then diam (H) ≤ 3 and gr (ΓI(M)) ∈ {3, 4, ∞}. Also, we prove that if Spec (R) and ω(Γ Nil (R)(M)) are finite, then χ(Γ Nil (R)(M)) ≤ ∣ Spec (R)∣ + ω(Γ Nil (R)(M)). Moreover, for a secondary R-module M and prime ideal P, we determine the chromatic number and the clique number of ΓP(M), where ann R(M) ⊆ P. Among other results, it is proved that for a semisimple R-module M with ann R(M) ⊆ I, ΓI(M) is a forest if and only if ΓI(M) is a union of isolated vertices or a star.


10.37236/1140 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Nathan Linial ◽  
Michael Saks ◽  
David Statter

Two sets are non-crossing if they are disjoint or one contains the other. The non-crossing graph ${\rm NC}_n$ is the graph whose vertex set is the set of nonempty subsets of $[n]=\{1,\ldots,n\}$ with an edge between any two non-crossing sets. Various facts, some new and some already known, concerning the chromatic number, fractional chromatic number, independence number, clique number and clique cover number of this graph are presented. For the chromatic number of this graph we show: $$ n(\log_e n -\Theta(1)) \le \chi({\rm NC}_n) \le n (\lceil\log_2 n\rceil-1). $$


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bikash Barman ◽  
Kukil Kalpa Rajkhowa

PurposeThe authors study the interdisciplinary relation between graph and algebraic structure ring defining a new graph, namely “non-essential sum graph”. The nonessential sum graph, denoted by NES(R), of a commutative ring R with unity is an undirected graph whose vertex set is the collection of all nonessential ideals of R and any two vertices are adjacent if and only if their sum is also a nonessential ideal of R.Design/methodology/approachThe method is theoretical.FindingsThe authors obtain some properties of NES(R) related with connectedness, diameter, girth, completeness, cut vertex, r-partition and regular character. The clique number, independence number and domination number of NES(R) are also found.Originality/valueThe paper is original.


2012 ◽  
Vol 11 (06) ◽  
pp. 1250114 ◽  
Author(s):  
MENG YE ◽  
TONGSUO WU

In this paper, a new kind of graph on a commutative ring R with identity, namely the co-maximal ideal graph is defined and studied. We use [Formula: see text] to denote this graph, with its vertices the proper ideals of R which are not contained in the Jacobson radical of R, and two vertices I1 and I2 are adjacent if and only if I1 + I2 = R. We show some properties of this graph. For example, this graph is a simple, connected graph with diameter less than or equal to three, and both the clique number and the chromatic number of the graph are equal to the number of maximal ideals of the ring R.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Tongsuo Wu ◽  
Meng Ye ◽  
Dancheng Lu ◽  
Houyi Yu

We study the co maximal graph Ω(R), the induced subgraph Γ(R) of Ω(R) whose vertex set is R∖(U(R)∪J(R)), and a retract Γr(R) of Γ(R), where R is a commutative ring. For a graph Γ(R) which contains a cycle, we show that the core of Γ(R) is a union of triangles and rectangles, while a vertex in Γ(R) is either an end vertex or a vertex in the core. For a nonlocal ring R, we prove that both the chromatic number and clique number of Γ(R) are identical with the number of maximal ideals of R. A graph Γr(R) is also introduced on the vertex set {Rx∣x∈R∖(U(R)∪J(R))}, and graph properties of Γr(R) are studied.


Author(s):  
Pranjali ◽  
Amit Kumar ◽  
Pooja Sharma

For a given graph G, its line graph denoted by L(G) is a graph whose vertex set V (L(G)) = E(G) and {e1, e2} ∈ E(L(G)) if e1 and e2 are incident to a common vertex in G. Let R be a finite commutative ring with nonzero identity and G(R) denotes the unit graph associated with R. In this manuscript, we have studied the line graph L(G(R)) of unit graph G(R)  associated with R. In the course of the investigation, several basic properties, viz., diameter, girth, clique, and chromatic number of L(G(R)) have been determined. Further, we have derived sufficient conditions for L(G(R)) to be Planar and Hamiltonian


Sign in / Sign up

Export Citation Format

Share Document