Adaptive Cheat Detection in Decentralized Volunteer Computing with Untrusted Nodes

Author(s):  
Nils Kopal ◽  
Matthäus Wander ◽  
Christopher Konze ◽  
Henner Heck
Keyword(s):  
2021 ◽  
Vol 21 (3) ◽  
pp. 1-33
Author(s):  
Qianmu Li ◽  
Shunmei Meng ◽  
Xiaonan Sang ◽  
Hanrui Zhang ◽  
Shoujin Wang ◽  
...  

Volunteer computing uses computers volunteered by the general public to do distributed scientific computing. Volunteer computing is being used in high-energy physics, molecular biology, medicine, astrophysics, climate study, and other areas. These projects have attained unprecedented computing power. However, with the development of information technology, the traditional defense system cannot deal with the unknown security problems of volunteer computing . At the same time, Cyber Mimic Defense (CMD) can defend the unknown attack behavior through its three characteristics: dynamic, heterogeneous, and redundant. As an important part of the CMD, the dynamic scheduling algorithm realizes the dynamic change of the service centralized executor, which can enusre the security and reliability of CMD of volunteer computing . Aiming at the problems of passive scheduling and large scheduling granularity existing in the existing scheduling algorithms, this article first proposes a scheduling algorithm based on time threshold and task threshold and realizes the dynamic randomness of mimic defense from two different dimensions; finally, combining time threshold and random threshold, a dynamic scheduling algorithm based on multi-level queue is proposed. The experiment shows that the dynamic scheduling algorithm based on multi-level queue can take both security and reliability into account, has better dynamic heterogeneous redundancy characteristics, and can effectively prevent the transformation rule of heterogeneous executors from being mastered by attackers.


2021 ◽  
Vol 21 (4) ◽  
pp. 1-22
Author(s):  
Ismaeel Al Ridhawi ◽  
Moayad Aloqaily ◽  
Yaser Jararweh

The rise of fast communication media both at the core and at the edge has resulted in unprecedented numbers of sophisticated and intelligent wireless IoT devices. Tactile Internet has enabled the interaction between humans and machines within their environment to achieve revolutionized solutions both on the move and in real-time. Many applications such as intelligent autonomous self-driving, smart agriculture and industrial solutions, and self-learning multimedia content filtering and sharing have become attainable through cooperative, distributed, and decentralized systems, namely, volunteer computing. This article introduces a blockchain-enabled resource sharing and service composition solution through volunteer computing. Device resource, computing, and intelligence capabilities are advertised in the environment to be made discoverable and available for sharing with the aid of blockchain technology. Incentives in the form of on-demand service availability are given to resource and service providers to ensure fair and balanced cooperative resource usage. Blockchains are formed whenever a service request is initiated with the aid of fog and mobile edge computing (MEC) devices to ensure secure communication and service delivery for the participants. Using both volunteer computing techniques and tactile internet architectures, we devise a fast and reliable service provisioning framework that relies on a reinforcement learning technique. Simulation results show that the proposed solution can achieve high reward distribution, increased number of blockchain formations, reduced delays, and balanced resource usage among participants, under the premise of high IoT device availability.


Science ◽  
2010 ◽  
Vol 329 (5997) ◽  
pp. 1305-1305 ◽  
Author(s):  
B. Knispel ◽  
B. Allen ◽  
J. M. Cordes ◽  
J. S. Deneva ◽  
D. Anderson ◽  
...  

Einstein@Home aggregates the computer power of hundreds of thousands of volunteers from 192 countries to mine large data sets. It has now found a 40.8-hertz isolated pulsar in radio survey data from the Arecibo Observatory taken in February 2007. Additional timing observations indicate that this pulsar is likely a disrupted recycled pulsar. PSR J2007+2722’s pulse profile is remarkably wide with emission over almost the entire spin period; the pulsar likely has closely aligned magnetic and spin axes. The massive computing power provided by volunteers should enable many more such discoveries.


2017 ◽  
Vol 108 ◽  
pp. 948-957 ◽  
Author(s):  
Pawel Chorazyk ◽  
Mateusz Godzik ◽  
Kamil Pietak ◽  
Wojciech Turek ◽  
Marek Kisiel-Dorohinicki ◽  
...  

2015 ◽  
Vol 43-44 ◽  
pp. 12-23 ◽  
Author(s):  
József Kovács ◽  
Attila Csaba Marosi ◽  
Ádám Visegrádi ◽  
Zoltán Farkas ◽  
Peter Kacsuk ◽  
...  
Keyword(s):  

2014 ◽  
Vol 76 (3) ◽  
pp. 591-601
Author(s):  
Muhammad Khalid Khan ◽  
Syed Irfan Hyder ◽  
Ghayas Uddin Ahmed ◽  
Saira Begum ◽  
Muhammad Aamir

Sign in / Sign up

Export Citation Format

Share Document