arecibo observatory
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 21)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Tarik J Zegmott ◽  
S C Lowry ◽  
A Rożek ◽  
B Rozitis ◽  
M C Nolan ◽  
...  

Abstract The YORP effect is a small thermal-radiation torque experienced by small asteroids, and is considered to be crucial in their physical and dynamical evolution. It is important to understand this effect by providing measurements of YORP for a range of asteroid types to facilitate the development of a theoretical framework. We are conducting a long-term observational study on a selection of near-Earth asteroids to support this. We focus here on (68346) 2001 KZ66, for which we obtained both optical and radar observations spanning a decade. This allowed us to perform a comprehensive analysis of the asteroid’s rotational evolution. Furthermore, radar observations from the Arecibo Observatory enabled us to generate a detailed shape model. We determined that (68346) is a retrograde rotator with its pole near the southern ecliptic pole, within a 15○ radius of longitude 170○ and latitude −85○. By combining our radar-derived shape model with the optical light curves we developed a refined solution to fit all available data, which required a YORP strength of $(8.43\pm 0.69)\times 10^{-8} \rm ~rad ~day^{-2}$. (68346) has a distinct bifurcated shape comprising a large ellipsoidal component joined by a sharp neckline to a smaller non-ellipsoidal component. This object likely formed from either the gentle merging of a binary system, or from the deformation of a rubble pile due to YORP spin-up. The shape exists in a stable configuration close to its minimum in topographic variation, where regolith is unlikely to migrate from areas of higher potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Caitano L. da Silva ◽  
Sophia D. Salazar ◽  
Christiano G. M. Brum ◽  
Pedrina Terra

AbstractOptical observations of transient luminous events and remote-sensing of the lower ionosphere with low-frequency radio waves have demonstrated that thunderstorms and lightning can have substantial impacts in the nighttime ionospheric D region. However, it remains a challenge to quantify such effects in the daytime lower ionosphere. The wealth of electron density data acquired over the years by the Arecibo Observatory incoherent scatter radar (ISR) with high vertical spatial resolution (300-m in the present study), combined with its tropical location in a region of high lightning activity, indicate a potentially transformative pathway to address this issue. Through a systematic survey, we show that daytime sudden electron density changes registered by Arecibo’s ISR during thunderstorm times are on average different than the ones happening during fair weather conditions (driven by other external factors). These changes typically correspond to electron density depletions in the D and E region. The survey also shows that these disturbances are different than the ones associated with solar flares, which tend to have longer duration and most often correspond to an increase in the local electron density content.


Author(s):  
S A Suleymanova ◽  
A N Kazantsev ◽  
J M Rankin ◽  
S V Logvinenko

Abstract We report the result of measurements of a gradual shift of the integrated pulses towards later spin phase of the anomalous pulsar B0943+10 at the high radio frequencies. We have used observations from the Arecibo Observatory and the GMRT at 327 and 325 MHz correspondingly. For the measurements we have proposed a special method for calculating the correct positions of the partially merged two components of the pulse profile shape with significant temporal changes in their amplitude ratio. The exponential change in the pulse phase with an amplitude of 4 ms and characteristic time of about 1 hour has been found. Comparison of our measurements at 325 and 327 MHz with those at the lower frequencies of 25–80, 62 and 112 MHz have shown that the character of the process does not depend on frequency across a wide frequency range. The result is very important for constraining the nature of the delay. It supports the assumption that the process results from changes in the vacuum gap near the surface of the pulsar. The further correlation between changes in the pulse phase and its intensity is discussed.


Physics World ◽  
2021 ◽  
Vol 33 (12) ◽  
pp. 10i-10i
Author(s):  
Liz Kruesi
Keyword(s):  

Author(s):  
Jean-Luc Margot

Most planetary radar applications require recording of complex voltages at sampling rates of up to 20[Formula: see text]MHz. I describe the design and implementation of a sampling system that has been installed at the Arecibo Observatory, Goldstone Solar System Radar, and Green Bank Telescope. After many years of operation, these data-taking systems have enabled the acquisition of hundreds of datasets, many of which still await publication.


Nature ◽  
2020 ◽  
Vol 588 (7839) ◽  
pp. 539-539
Author(s):  
Abel Méndez
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document