Computer Vision and EMG-Based Handwriting Analysis for Classification in Parkinson’s Disease

Author(s):  
Claudio Loconsole ◽  
Gianpaolo Francesco Trotta ◽  
Antonio Brunetti ◽  
Joseph Trotta ◽  
Angelo Schiavone ◽  
...  
2019 ◽  
Vol 121 ◽  
pp. 28-36 ◽  
Author(s):  
Claudio Loconsole ◽  
Giacomo Donato Cascarano ◽  
Antonio Brunetti ◽  
Gianpaolo Francesco Trotta ◽  
Giacomo Losavio ◽  
...  

2014 ◽  
Vol 60 (1) ◽  
pp. 27-40 ◽  
Author(s):  
Taha Khan ◽  
Dag Nyholm ◽  
Jerker Westin ◽  
Mark Dougherty

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 156620-156645 ◽  
Author(s):  
Navleen Kour ◽  
Sunanda ◽  
Sakshi Arora

Author(s):  
Avner Abrami ◽  
Steven Gunzler ◽  
Camilla Kilbane ◽  
Rachel Ostrand ◽  
Bryan Ho ◽  
...  

2016 ◽  
Vol 136 ◽  
pp. 79-88 ◽  
Author(s):  
Clayton R. Pereira ◽  
Danilo R. Pereira ◽  
Francisco A. Silva ◽  
João P. Masieiro ◽  
Silke A.T. Weber ◽  
...  

2019 ◽  
Vol 64 (2) ◽  
pp. 187-194 ◽  
Author(s):  
Vera Miler Jerkovic ◽  
Vladimir Kojic ◽  
Natasa Dragasevic Miskovic ◽  
Tijana Djukic ◽  
Vladimir S. Kostic ◽  
...  

Abstract The purpose of this paper is to emphasize the importance of in-air movement besides on-surface movement for handwriting analysis. The proposed method uses a classification of drawing healthy subjects and subjects with Parkinson’s disease, according to their on-surface and in-air handwriting parameters during their writing on a graphical tablet. Experimental results on real data sets demonstrate that the highest accuracy of subject’s classification was obtained by combining both on-surface and in-air kinematic parameters.


Sign in / Sign up

Export Citation Format

Share Document