Quasi-regular Representations of Two-Step Nilmanifolds

Author(s):  
Amira Ghorbel ◽  
Hatem Hamrouni
1995 ◽  
Vol 36 (3) ◽  
pp. 1404-1412 ◽  
Author(s):  
Demosthenes Ellinas ◽  
Jan Sobczyk

2021 ◽  
Vol 27 (5) ◽  
Author(s):  
Francesca Bartolucci ◽  
Filippo De Mari ◽  
Matteo Monti

AbstractFollowing previous work in the continuous setup, we construct the unitarization of the horocyclic Radon transform on a homogeneous tree X and we show that it intertwines the quasi regular representations of the group of isometries of X on the tree itself and on the space of horocycles.


Author(s):  
Ronald L. Lipsman

AbstractThe Plancherel formula for the horocycle space, and several generalizations, is derived within the framework of quasi-regular representations which have monomial spectrum. The proof uses only machinery from the Penney-Fujiwara distribution-theoretic technique; no special semisimple harmonic analysis is needed. The Plancherel formulas obtained include the spectral distributions and the intertwining operators that effect the direct integral decomposition of the quasi-regular representation.


1972 ◽  
Vol 24 (6) ◽  
pp. 1009-1018 ◽  
Author(s):  
Lewis A. Nowitz ◽  
Mark E. Watkins

The present paper is a sequel to the previous paper bearing the same title by the same authors [3] and which will be hereafter designated by the bold-face Roman numeral I. Further results are obtained in determining whether a given finite non-abelian group G has a graphical regular representation. In particular, an affirmative answer will be given if (|G|, 6) = 1.Inasmuch as much of the machinery of I will be required in the proofs to be presented and a perusal of I is strongly recommended to set the stage and provide motivation for this paper, an independent and redundant introduction will be omitted in the interest of economy.


Author(s):  
Felix Leinen

AbstractWe study the embeddings of a finite p-group U into Sylow p-subgroups of Sym (U) induced by the right regular representation p: U→ Sym(U). It turns out that there is a one-to-one correspondence between the chief series in U and the Sylow p-subgroups of Sym (U) containing Up. Here, the Sylow p-subgroup Pσ of Sym (U) correspoding to the chief series σ in U is characterized by the property that the intersections of Up with the terms of any chief series in Pσ form σp. Moreover, we see that p: U→ Pσ are precisely the kinds of embeddings used in a previous paper to construct the non-trivial countable algebraically closed locally finite p-groups as direct limits of finite p-groups.


2019 ◽  
Vol 19 (08) ◽  
pp. 2050149
Author(s):  
Shanshan Liu ◽  
Lina Song ◽  
Rong Tang

In this paper, first we study dual representations and tensor representations of Hom-pre-Lie algebras. Then we develop the cohomology theory of regular Hom-pre-Lie algebras in terms of the cohomology theory of regular Hom-Lie algebras. As applications, we study linear deformations of regular Hom-pre-Lie algebras, which are characterized by the second cohomology groups of regular Hom-pre-Lie algebras with the coefficients in the regular representations. The notion of a Nijenhuis operator on a regular Hom-pre-Lie algebra is introduced which can generate a trivial linear deformation of a regular Hom-pre-Lie algebra. Finally, we introduce the notion of a Hessian structure on a regular Hom-pre-Lie algebra, which is a symmetric nondegenerate 2-cocycle with the coefficient in the trivial representation. We also introduce the notion of an [Formula: see text]-operator on a regular Hom-pre-Lie algebra, by which we give an equivalent characterization of a Hessian structure.


2019 ◽  
Vol 22 (5) ◽  
pp. 795-807 ◽  
Author(s):  
Arnaud Brothier ◽  
Vaughan F. R. Jones

Abstract A machinery developed by the second author produces a rich family of unitary representations of the Thompson groups F, T and V. We use it to give direct proofs of two previously known results. First, we exhibit a unitary representation of V that has an almost invariant vector but no nonzero {[F,F]} -invariant vectors reproving and extending Reznikoff’s result that any intermediate subgroup between the commutator subgroup of F and V does not have Kazhdan’s property (T) (though Reznikoff proved it for subgroups of T). Second, we construct a one parameter family interpolating between the trivial and the left regular representations of V. We exhibit a net of coefficients for those representations which vanish at infinity on T and converge to 1 thus reproving that T has the Haagerup property after Farley who further proved that V has this property.


Sign in / Sign up

Export Citation Format

Share Document