An Enhanced Approach to Rule Base Simplification of First-Order Takagi-Sugeno Fuzzy Inference Systems

Author(s):  
Caro Fuchs ◽  
Anna Wilbik ◽  
Saskia van Loon ◽  
Arjen-Kars Boer ◽  
Uzay Kaymak
2004 ◽  
Vol 2 (2) ◽  
pp. 185-192
Author(s):  
Shitong Wang ◽  
Korris F. L. Chung ◽  
Jieping Lu ◽  
Bin Han ◽  
Dewen Hu

2014 ◽  
Vol 644-650 ◽  
pp. 367-372 ◽  
Author(s):  
Liang Luo ◽  
Yin He Wang ◽  
Yu Feng Sun

A novel adaptive stability scheme is presented for a class of chaos system with uncertainties. First, the new fuzzy inference systems are employed to approximate uncertainties. Subsequently, the sliding mode controllers are proposed for stability of the chaos systems. Theoretical analysis and numerical simulations show the effectiveness of the proposed scheme.


2011 ◽  
Vol 20 (03) ◽  
pp. 375-400 ◽  
Author(s):  
INÉS DEL CAMPO ◽  
JAVIER ECHANOBE ◽  
KOLDO BASTERRETXEA ◽  
GUILLERMO BOSQUE

This paper presents a scalable architecture suitable for the implementation of high-speed fuzzy inference systems on reconfigurable hardware. The main features of the proposed architecture, based on the Takagi–Sugeno inference model, are scalability, high performance, and flexibility. A scalable fuzzy inference system (FIS) must be efficient and practical when applied to complex situations, such as multidimensional problems with a large number of membership functions and a large rule base. Several current application areas of fuzzy computation require such enhanced capabilities to deal with real-time problems (e.g., robotics, automotive control, etc.). Scalability and high performance of the proposed solution have been achieved by exploiting the inherent parallelism of the inference model, while flexibility has been obtained by applying hardware/software codesign techniques to reconfigurable hardware. Last generation reconfigurable technologies, particularly field programmable gate arrays (FPGAs), make it possible to implement the whole embedded FIS (e.g., processor core, memory blocks, peripherals, and specific hardware for fuzzy inference) on a single chip with the consequent savings in size, cost, and power consumption. As a prototyping example, we implemented a complex fuzzy controller for a vehicle semi-active suspension system composed of four three-input FIS on a single FPGA of the Xilinx's Virtex 5 device family.


2021 ◽  
Vol 27 (11) ◽  
pp. 582-591
Author(s):  
A. A. Sorokin ◽  

The purpose of this paper is to study the patterns of the formation of output values in hierarchical systems offuzzy inference. Hierarchical fuzzy inference systems (HFIS) are used to aggregate heterogeneous parameters during the assessment of the state of various elements of complex systems. The use of HFIS allows avoiding the "curse" of the dimension associated with a strong increase in the number and complication of the structure of the production rule, which is characteristic of conventional fuzzy inference systems (FIS), which aggregate the results of interaction of different values of input variables in one knowledge base. As part of the research, numerical experiments were carried out to study the features of the formation of output patterns in HFIS, based on FIS using the Mamdani and Takagi-Sugeno algorithms. As a result of the experiment, it was shown that the output values of the studied HFIS tend to be grouped in the region of fixed values, and the output pattern itself acquires a stepwise character. The revealed property allows using HFIS to distribute the objects of the analyzed sample into groups of states. This property can be used to solve problems of distributing objects into groups in conditions when it is difficult to form a training sample for machine learning methods, but at the same time there is knowledge of the expert group about the features of the functioning of the object of research. Additionally, the paper investigates the features of the formation of output patterns depending on the parameters of the membership functions describing the input variables in HFIS, which are based on FIS using the Mamdani algorithm and HFIS, which are based on FIS using the Takagi-Sugeno algorithm.


Author(s):  
R. A. MARQUES PEREIRA ◽  
R. A. RIBEIRO ◽  
P. SERRA

We propose an extension of the Takagi-Sugeno-Kang (TSK) fuzzy inference system, using Choquet integration for aggregating the single rule outputs. In the new Choquet-TSK fuzzy inference system, the pairwise synergies between rules are encoded in a rule correlation matrix computed from the activation pattern of the rule base. The rule correlation matrix is then used to modulate the parameters of the Choquet integration scheme in order to compensate for the effect of rule synergies, which are present in most rule bases to a higher or lesser extent.The standard TSK fuzzy inference system remains a particular instance of the proposed Choquet-TSK extension and corresponds to the ideal case of rule independence. However, when rule correlation is present, the Choquet-TSK fuzzy inference system takes it into account when computing the final output of the system. On the basis of the rule correlation matrix, the new aggregation scheme of the Choquet-TSK fuzzy inference system attenuates the effective weight of positively correlated rules and emphasizes that of negatively correlated rules. Some case studies are discussed in order to illustrate the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document