Kinect-Based Real-Time Gesture Recognition Using Deep Convolutional Neural Networks for Touchless Visualization of Hepatic Anatomical Models in Surgery

Author(s):  
Jia-Qing Liu ◽  
Tomoko Tateyama ◽  
Yutaro Iwamoto ◽  
Yen-Wei Chen
Author(s):  
Biluo Shen ◽  
Zhe Zhang ◽  
Xiaojing Shi ◽  
Caiguang Cao ◽  
Zeyu Zhang ◽  
...  

Abstract Purpose Surgery is the predominant treatment modality of human glioma but suffers difficulty on clearly identifying tumor boundaries in clinic. Conventional practice involves neurosurgeon’s visual evaluation and intraoperative histological examination of dissected tissues using frozen section, which is time-consuming and complex. The aim of this study was to develop fluorescent imaging coupled with artificial intelligence technique to quickly and accurately determine glioma in real-time during surgery. Methods Glioma patients (N = 23) were enrolled and injected with indocyanine green for fluorescence image–guided surgery. Tissue samples (N = 1874) were harvested from surgery of these patients, and the second near-infrared window (NIR-II, 1000–1700 nm) fluorescence images were obtained. Deep convolutional neural networks (CNNs) combined with NIR-II fluorescence imaging (named as FL-CNN) were explored to automatically provide pathological diagnosis of glioma in situ in real-time during patient surgery. The pathological examination results were used as the gold standard. Results The developed FL-CNN achieved the area under the curve (AUC) of 0.945. Comparing to neurosurgeons’ judgment, with the same level of specificity >80%, FL-CNN achieved a much higher sensitivity (93.8% versus 82.0%, P < 0.001) with zero time overhead. Further experiments demonstrated that FL-CNN corrected >70% of the errors made by neurosurgeons. FL-CNN was also able to rapidly predict grade and Ki-67 level (AUC 0.810 and 0.625) of tumor specimens intraoperatively. Conclusion Our study demonstrates that deep CNNs are better at capturing important information from fluorescence images than surgeons’ evaluation during patient surgery. FL-CNN is highly promising to provide pathological diagnosis intraoperatively and assist neurosurgeons to obtain maximum resection safely. Trial registration ChiCTR ChiCTR2000029402. Registered 29 January 2020, retrospectively registered


2017 ◽  
Vol 10 (27) ◽  
pp. 1329-1342 ◽  
Author(s):  
Javier O. Pinzon Arenas ◽  
Robinson Jimenez Moreno ◽  
Paula C. Useche Murillo

This paper presents the implementation of a Region-based Convolutional Neural Network focused on the recognition and localization of hand gestures, in this case 2 types of gestures: open and closed hand, in order to achieve the recognition of such gestures in dynamic backgrounds. The neural network is trained and validated, achieving a 99.4% validation accuracy in gesture recognition and a 25% average accuracy in RoI localization, which is then tested in real time, where its operation is verified through times taken for recognition, execution behavior through trained and untrained gestures, and complex backgrounds.


2021 ◽  
Author(s):  
Arpita Vats

<p>In this paper, it is introduced a hand gesture recognition system to recognize the characters in the real time. The system consists of three modules: real time hand tracking, training gesture and gesture recognition using Convolutional Neural Networks. Camshift algorithm and hand blobs analysis for hand tracking are being used to obtain motion descriptors and hand region. It is fairy robust to background cluster and uses skin color for hand gesture tracking and recognition. Furthermore, the techniques have been proposed to improve the performance of the recognition and the accuracy using the approaches like selection of the training images and the adaptive threshold gesture to remove non-gesture pattern that helps to qualify an input pattern as a gesture. In the experiments, it has been tested to the vocabulary of 36 gestures including the alphabets and digits, and results effectiveness of the approach.</p>


Sign in / Sign up

Export Citation Format

Share Document