anatomical models
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 89)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Ana Morris

<p>Novel technologies that produce medical models which are synthetic equivalents to human tissue may forever change the way human anatomy and medicine are explored. Medical modelling using a bitmap-based additive manufacturing workflow offers exciting opportunities for medical education, informed consent practices, skills acquisition, pre-operative planning and surgical simulation. Moving medical data from the 2D-world to tactile, highly detailed 3D-printed anatomical models may significantly change how we comprehend the body; revamping everything – from medical education to clinical practice.  Research Problem The existing workflow for producing patient-specific anatomical models from biomedical imaging data involves image thresholding and iso-surface extraction techniques that result in surface meshes (also known as objects or parts). This process restricts shape specification to one colour and density, limiting material blending and resulting in anatomically inequivalent medical models. So, how can the use of 3D-printing go beyond static anatomical replication? Imagine pulling back the layers of tissue to reveal the complexity of a procedure, allowing a family to understand and discuss their diagnosis. Overcoming the disadvantages of static medical models could be a breakthrough in the areas of medical communication and simulation. Currently, patient specific models are either rigid or mesh-based and, therefore, are not equivalents of physiology.  Research Aim The aim of this research is to create tangible and visually compelling patient-specific prototypes of human anatomy, offering an insight into the capabilities of new bitmap-based 3D-printing technology. It proposes that full colour, multi-property, voxel-based 3D-printing can emulate physiology, creating a new format of visual and physical medical communication.  Data Collection and Procedure For this study, biomedical imaging data was converted into multi-property 3D-printed synthetic anatomy by bypassing the conversion steps of traditional segmentation. Bitmap-based 3D-printing allows for the precise control over every 14-micron material droplet or “voxel”.  Control over each voxel involves a process of sending bitmap images to a high-resolution and multi-property 3D-printer. Bitmap-based 3D-printed synthetic medical models – which mimicked the colour and density of human anatomy – were successfully produced.  Findings This research presented a novel and streamlined bitmap-based medical modelling workflow with the potential to save manufacturing time and labour cost. Moreover, this workflow produced highly accurate models with graduated densities, translucency, colour and flexion – overcoming complexities that arise due to our body’s opaqueness. The presented workflow may serve as an incentive for others to investigate bitmap-based 3D-printing workflows for different manufacturing applications.</p>


2021 ◽  
Author(s):  
◽  
Ana Morris

<p>Novel technologies that produce medical models which are synthetic equivalents to human tissue may forever change the way human anatomy and medicine are explored. Medical modelling using a bitmap-based additive manufacturing workflow offers exciting opportunities for medical education, informed consent practices, skills acquisition, pre-operative planning and surgical simulation. Moving medical data from the 2D-world to tactile, highly detailed 3D-printed anatomical models may significantly change how we comprehend the body; revamping everything – from medical education to clinical practice.  Research Problem The existing workflow for producing patient-specific anatomical models from biomedical imaging data involves image thresholding and iso-surface extraction techniques that result in surface meshes (also known as objects or parts). This process restricts shape specification to one colour and density, limiting material blending and resulting in anatomically inequivalent medical models. So, how can the use of 3D-printing go beyond static anatomical replication? Imagine pulling back the layers of tissue to reveal the complexity of a procedure, allowing a family to understand and discuss their diagnosis. Overcoming the disadvantages of static medical models could be a breakthrough in the areas of medical communication and simulation. Currently, patient specific models are either rigid or mesh-based and, therefore, are not equivalents of physiology.  Research Aim The aim of this research is to create tangible and visually compelling patient-specific prototypes of human anatomy, offering an insight into the capabilities of new bitmap-based 3D-printing technology. It proposes that full colour, multi-property, voxel-based 3D-printing can emulate physiology, creating a new format of visual and physical medical communication.  Data Collection and Procedure For this study, biomedical imaging data was converted into multi-property 3D-printed synthetic anatomy by bypassing the conversion steps of traditional segmentation. Bitmap-based 3D-printing allows for the precise control over every 14-micron material droplet or “voxel”.  Control over each voxel involves a process of sending bitmap images to a high-resolution and multi-property 3D-printer. Bitmap-based 3D-printed synthetic medical models – which mimicked the colour and density of human anatomy – were successfully produced.  Findings This research presented a novel and streamlined bitmap-based medical modelling workflow with the potential to save manufacturing time and labour cost. Moreover, this workflow produced highly accurate models with graduated densities, translucency, colour and flexion – overcoming complexities that arise due to our body’s opaqueness. The presented workflow may serve as an incentive for others to investigate bitmap-based 3D-printing workflows for different manufacturing applications.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Ivy Bui ◽  
Arunabh Bhattacharya ◽  
Si Hui Wong ◽  
Harinder R. Singh ◽  
Arpit Agarwal

For the past two decades, slide-based presentation has been the method of content delivery in medical education. In recent years, other teaching modalities involving three-dimensional (3D) visualization such as 3D printed anatomical models, virtual reality (VR), and augmented reality (AR) have been explored to augment the education experience. This review article will analyze the use of slide-based presentation, 3D printed anatomical models, AR, and VR technologies in medical education, including their benefits and limitations.


2021 ◽  
Vol 148 (6) ◽  
pp. 1047e-1051e
Author(s):  
Daisuke Mitsuno ◽  
Koichi Ueda ◽  
Takashi Nuri ◽  
Misato Katayama

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7248
Author(s):  
Valerio De Santis ◽  
Luca Giaccone ◽  
Fabio Freschi

In this study, the human exposure to the magnetic field emitted by a wireless power transfer (WPT) system during the static recharging operations of a compact electric vehicle (EV) is evaluated. Specifically, the influence of the posture of realistic anatomical models, both in standing and lying positions, either inside or outside the EV, is considered. Aligned and misaligned coil configurations of the WPT system placed both in the rear and front position of the car floor are considered as well. Compliance with safety standards and guidelines has proven that reference levels are exceeded in the extreme case of a person lying on the floor with a hand close to the WPT coils, whereas the system is always compliant with the basic restrictions, at least for the considered scenarios.


2021 ◽  
pp. 110125
Author(s):  
Guo Dong Goh ◽  
Swee Leong Sing ◽  
Yuan Fang Lim ◽  
Jia Li Janessa Thong ◽  
Zhen Kai Peh ◽  
...  

2021 ◽  
Vol 875 (1) ◽  
pp. 012057
Author(s):  
V A Shamaev ◽  
I N Medvedev ◽  
D A Parinov

Abstract Structural and anatomical models of alder wood have been developed on the basis of technical and physical models of wood. The models enable to solve the problem of penetrating changes in wood texture by combining selective treatment (impregnation) with two wood colouring agents in different directions of anisotropy, followed by uneven pressing. Specimens with the texture of mahogany, rosewood, walnut, etc have been obtained. Alder wood is pressed at an angle of 45° to the radial direction to obtain the texture of mahogany, at an angle of 90° – for a texture of rosewood. At the same time, physical and mechanical properties of modified wood correspond to similar indicators of wood of these species. The study of macro-and microstructure of pressed wood suggests that texture of the obtained material corresponds to the texture of rosewood and mahogany. It is possible to imitate any species of valuable wood using the obtained structural models and the developed techniques.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Daniel Gillett ◽  
Waiel Bashari ◽  
Russell Senanayake ◽  
Daniel Marsden ◽  
Olympia Koulouri ◽  
...  

Abstract Background Pituitary adenomas can give rise to a variety of clinical disorders and surgery is often the primary treatment option. However, preoperative magnetic resonance imaging (MRI) does not always reliably identify the site of an adenoma. In this setting molecular (functional) imaging (e.g. 11C-methionine PET/CT) may help with tumor localisation, although interpretation of these 2D images can be challenging. 3D printing of anatomicalal models for other indications has been shown to aid surgical planning and improve patient understanding of the planned procedure. Here, we explore the potential utility of four types of 3D printing using PET/CT and co-registered MRI for visualising pituitary adenomas. Methods A 3D patient-specific model based on a challenging clinical case was created by segmenting the pituitary gland, pituitary adenoma, carotid arteries and bone using contemporary PET/CT and MR images. The 3D anatomical models were printed using VP, MEX, MJ and PBF 3D printing methods. Different anatomicalal structures were printed in color with the exception of the PBF anatomical model where a single color was used. The anatomical models were compared against the computer model to assess printing accuracy. Three groups of clinicians (endocrinologists, neurosurgeons and ENT surgeons) assessed the anatomical models for their potential clinical utility. Results All of the printing techniques produced anatomical models which were spatially accurate, with the commercial printing techniques (MJ and PBF) and the consumer printing techniques (VP and MEX) demonstrating comparable findings (all techniques had mean spatial differences from the computer model of < 0.6 mm). The MJ, VP and MEX printing techniques yielded multicolored anatomical models, which the clinicians unanimously agreed would be preferable to use when talking to a patient; in contrast, 50%, 40% and 0% of endocrinologists, neurosurgeons and ENT surgeons respectively would consider using the PBF model. Conclusion 3D anatomical models of pituitary tumors were successfully created from PET/CT and MRI using four different 3D printing techniques. However, the expert reviewers unanimously preferred the multicolor prints. Importantly, the consumer printers performed comparably to the commercial MJ printing technique, opening the possibility that these methods can be adopted into routine clinical practice with only a modest investment.


Sign in / Sign up

Export Citation Format

Share Document