Uniformly Convergent Difference Scheme for a Singularly Perturbed Problem of Mixed Parabolic-Elliptic Type

Author(s):  
Iliya A. Brayanov
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Wondwosen Gebeyaw Melesse ◽  
Awoke Andargie Tiruneh ◽  
Getachew Adamu Derese

In this paper, a class of linear second-order singularly perturbed differential-difference turning point problems with mixed shifts exhibiting two exponential boundary layers is considered. For the numerical treatment of these problems, first we employ a second-order Taylor’s series approximation on the terms containing shift parameters and obtain a modified singularly perturbed problem which approximates the original problem. Then a hybrid finite difference scheme on an appropriate piecewise-uniform Shishkin mesh is constructed to discretize the modified problem. Further, we proved that the method is almost second-order ɛ-uniformly convergent in the maximum norm. Numerical experiments are considered to illustrate the theoretical results. In addition, the effect of the shift parameters on the layer behavior of the solution is also examined.


Sign in / Sign up

Export Citation Format

Share Document