2021 ◽  
Author(s):  
Amir El-Aooiti

Although Constraint Satisfaction Problems (CSPs) are generally known to be NP-complete, placing restrictions on the constraint template can yield tractable subclasses. By studying the operations in the polymorphism of the constraint language, we can construct algorithms which solve our CSP in polynomial time. Previous results for CSPs with Mal’tsev [7] and generalized majority-minority operations [10] were improved to include CSPs with k-edge operations [15]. We present an alternative method to solve k-edge CSPs by utilizing Boolean trees placing the problem in the class NC2 . We do this by arranging the logical formulas describing the CSP into a Boolean tree where each leaf represents a constraint in the CSP. We take the conjunction of the constraint formulas yielding partial solutions at every step until we are left with a solution set at the root of the tree which satisfies all of the constraints.


2014 ◽  
Vol 23 (04) ◽  
pp. 1460015 ◽  
Author(s):  
Jérôme Amilhastre ◽  
Hélène Fargier ◽  
Alexandre Niveau ◽  
Cédric Pralet

Constraint Satisfaction Problems (CSPs) offer a powerful framework for representing a great variety of problems. The difficulty is that most of the requests associated with CSPs are NP-hard. When these requests have to be addressed online, Multivalued Decision Diagrams (MDDs) have been proposed as a way to compile CSPs. In the present paper, we draw a compilation map of MDDs, in the spirit of the NNF compilation map, analyzing MDDs according to their succinctness and to their tractable transformations and queries. Deterministic ordered MDDs are a generalization of ordered binary decision diagrams to non-Boolean domains: unsurprisingly, they have similar capabilities. More interestingly, our study puts forward the interest of non-deterministic ordered MDDs: when restricted to Boolean domains, they capture OBDDs and DNFs as proper subsets and have performances close to those of DNNFs. The comparison to classical, deterministic MDDs shows that relaxing the determinism requirement leads to an increase in succinctness and allows more transformations to be satisfied in polynomial time (typically, the disjunctive ones). Experiments on random problems confirm the gain in succinctness.


2007 ◽  
Vol 28 ◽  
pp. 107-118 ◽  
Author(s):  
H. Jia ◽  
C. Moore ◽  
D. Strain

To test incomplete search algorithms for constraint satisfaction problems such as 3-SAT, we need a source of hard, but satisfiable, benchmark instances. A simple way to do this is to choose a random truth assignment A, and then choose clauses randomly from among those satisfied by A. However, this method tends to produce easy problems, since the majority of literals point toward the "hidden'' assignment A. Last year, Achlioptas, Jia and Moore proposed a problem generator that cancels this effect by hiding both A and its complement. While the resulting formulas appear to be just as hard for DPLL algorithms as random 3-SAT formulas with no hidden assignment, they can be solved by WalkSAT in only polynomial time. Here we propose a new method to cancel the attraction to A, by choosing a clause with t > 0 literals satisfied by A with probability proportional to q^t for some q < 1. By varying q, we can generate formulas whose variables have no bias, i.e., which are equally likely to be true or false; we can even cause the formula to "deceptively'' point away from A. We present theoretical and experimental results suggesting that these formulas are exponentially hard both for DPLL algorithms and for incomplete algorithms such as WalkSAT.


2021 ◽  
Vol 13 (4) ◽  
pp. 1-20
Author(s):  
Alex Brandts ◽  
Marcin Wrochna ◽  
Stanislav Živný

While 3-SAT is NP-hard, 2-SAT is solvable in polynomial time. Austrin et al. [SICOMP’17] proved a result known as “(2+ɛ)-SAT is NP-hard.” They showed that the problem of distinguishing k -CNF formulas that are g -satisfiable (i.e., some assignment satisfies at least g literals in every clause) from those that are not even 1-satisfiable is NP-hard if g/k < 1/2 and is in P otherwise. We study a generalisation of SAT on arbitrary finite domains, with clauses that are disjunctions of unary constraints, and establish analogous behaviour. Thus, we give a dichotomy for a natural fragment of promise constraint satisfaction problems ( PCSPs ) on arbitrary finite domains. The hardness side is proved using the algebraic approach via a new general NP-hardness criterion on polymorphisms, which is based on a gap version of the Layered Label Cover problem. We show that previously used criteria are insufficient—the problem hence gives an interesting benchmark of algebraic techniques for proving hardness of approximation in problems such as PCSPs.


2021 ◽  
Vol 68 (5) ◽  
pp. 1-50
Author(s):  
Georg Gottlob ◽  
Matthias Lanzinger ◽  
Reinhard Pichler ◽  
Igor Razgon

Hypertree decompositions (HDs), as well as the more powerful generalized hypertree decompositions (GHDs), and the yet more general fractional hypertree decompositions (FHDs) are hypergraph decomposition methods successfully used for answering conjunctive queries and for solving constraint satisfaction problems. Every hypergraph H has a width relative to each of these methods: its hypertree width hw(H) , its generalized hypertree width ghw(H) , and its fractional hypertree width fhw(H) , respectively. It is known that hw(H)≤ k can be checked in polynomial time for fixed k , while checking ghw(H)≤ k is NP-complete for k ≥ 3 . The complexity of checking fhw(H)≤ k for a fixed k has been open for over a decade. We settle this open problem by showing that checking fhw(H)≤ k is NP-complete, even for k=2 . The same construction allows us to prove also the NP-completeness of checking ghw(H)≤ k for k=2 . After that, we identify meaningful restrictions that make checking for bounded ghw or fhw tractable or allow for an efficient approximation of the fhw .


2021 ◽  
Author(s):  
Amir El-Aooiti

Although Constraint Satisfaction Problems (CSPs) are generally known to be NP-complete, placing restrictions on the constraint template can yield tractable subclasses. By studying the operations in the polymorphism of the constraint language, we can construct algorithms which solve our CSP in polynomial time. Previous results for CSPs with Mal’tsev [7] and generalized majority-minority operations [10] were improved to include CSPs with k-edge operations [15]. We present an alternative method to solve k-edge CSPs by utilizing Boolean trees placing the problem in the class NC2 . We do this by arranging the logical formulas describing the CSP into a Boolean tree where each leaf represents a constraint in the CSP. We take the conjunction of the constraint formulas yielding partial solutions at every step until we are left with a solution set at the root of the tree which satisfies all of the constraints.


Sign in / Sign up

Export Citation Format

Share Document