binary decision
Recently Published Documents


TOTAL DOCUMENTS

980
(FIVE YEARS 149)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Vol 70 (1) ◽  
pp. 31-37
Author(s):  
Axel Schild ◽  
Alexander Rose ◽  
Martin Grotjahn ◽  
Bennet Luck

Abstract This paper proposes an extended Petri net formalism as a suitable language for composing optimal scheduling problems of industrial production processes with real and binary decision variables. The proposed approach is modular and scalable, as the overall process dynamics and constraints can be collected by parsing of all atomic elements of the net graph. To conclude, we demonstrate the use of this framework for modeling the moulding sand preparation process of a real foundry plant.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 111
Author(s):  
Asaad Sellmann ◽  
Désirée Wagner ◽  
Lucas Holtz ◽  
Jörg Eschweiler ◽  
Christian Diers ◽  
...  

With the growing number of people seeking medical advice due to low back pain (LBP), individualised physiotherapeutic rehabilitation is becoming increasingly relevant. Thirty volunteers were asked to perform three typical LBP rehabilitation exercises (Prone-Rocking, Bird-Dog and Rowing) in two categories: clinically prescribed exercise (CPE) and typical compensatory movement (TCM). Three inertial sensors were used to detect the movement of the back during exercise performance and thus generate a dataset that is used to develop an algorithm that detects typical compensatory movements in autonomously performed LBP exercises. The best feature combinations out of 50 derived features displaying the highest capacity to differentiate between CPE and TCM in each exercise were determined. For classifying exercise movements as CPE or TCM, a binary decision tree was trained with the best performing features. The results showed that the trained classifier is able to distinguish CPE from TCM in Bird-Dog, Prone-Rocking and Rowing with up to 97.7% (Head Sensor, one feature), 98.9% (Upper back Sensor, one feature) and 80.5% (Upper back Sensor, two features) using only one sensor. Thus, as a proof-of-concept, the introduced classification models can be used to detect typical compensatory movements in autonomously performed LBP exercises.


2021 ◽  
Vol 11 (12) ◽  
pp. 1388
Author(s):  
Tudor Voicu Moga ◽  
Ciprian David ◽  
Alina Popescu ◽  
Raluca Lupusoru ◽  
Darius Heredea ◽  
...  

Background: Multiparametric ultrasound (MPUS) is a concept whereby the examiner is encouraged to use the latest features of an ultrasound machine. The aim of this study was to reanalyze inconclusive focal liver lesions (FLLs) that had been analyzed via contrast enhanced ultrasound (CEUS) using the MPUS approach with the help of a tree-based decision classifier. Materials and methods: We retrospectively analyzed FLLs that were inconclusive upon CEUS examination in our department, focusing our attention on samples taken over a period of two years (2017−2018). MPUS reanalysis followed a three-step algorithm, taking into account the liver stiffness measurement (LSM), time–intensity curve analysis (TIC), and parametric imaging (PI). After processing all steps of the algorithm, a binary decision tree classifier (BDTC) was used to achieve a software-assisted decision. Results: Area was the only TIC-CEUS parameter that showed a significant difference between malign and benign lesions with a cutoff of >−19.3 dB for washout phenomena (AUROC = 0.58, Se = 74.0%, Sp = 45.7%). Using the binary decision tree classifier (BDTC) algorithm, we correctly classified 71 out of 91 lesions according to their malignant or benignant status, with an accuracy of 78.0% (sensitivity = 62%, specificity = 45%, and precision = 80%). Conclusions: By reevaluating inconclusive FLLs that had been analyzed via CEUS using MPUS, we managed to determine that 78% of the lesions were malignant and, in 28% of them, we established the lesion type.


2021 ◽  
Vol 127 (25) ◽  
Author(s):  
Dorian Bouchet ◽  
Lukas M. Rachbauer ◽  
Stefan Rotter ◽  
Allard P. Mosk ◽  
Emmanuel Bossy

Author(s):  
Anatoly A. Prihozhy

The problem of synthesis and optimisation of logical reversible and quantum circuits from functional descriptions represented as decision diagrams is considered. It is one of the key problems being solved with the aim of creating quantum computing technology and quantum computers. A new method of stepwise transformation of the initial functional specification to a quantum circuit is proposed, which provides for the following project states: reduced ordered binary decision diagram, if-decision diagram, functional if-decision diagram, reversible circuit and quantum circuit. The novelty of the method consists in extending the Shannon and Davio expansions of a Boolean function on a single variable to the expansions of the same Boolean function on another function with obtaining decomposition products that are represented by incompletely defined Boolean functions. Uncertainty in the decomposition products gives remarkable opportunities for minimising the graph representation of the specified function. Instead of two outgoing branches of the binary diagram vertex, three outgoing branches of the if-diagram vertex are generated, which increase the level of parallelism in reversible and quantum circuits. For each transformation step, appropriate mapping rules are proposed that reduce the number of lines, gates and the depth of the reversible and quantum circuit. The comparison of new results with the results given by the known method of mapping the vertices of binary decision diagram into cascades of reversible and quantum gates shows a significant improvement in the quality of quantum circuits that are synthesised by the proposed method.


2021 ◽  
Author(s):  
Carmen Kohl ◽  
Michelle Wong ◽  
Jing Jun Wong ◽  
Matthew Rushworth ◽  
Bolton Chau

Abstract There has been debate about whether addition of an irrelevant distractor option to an otherwise binary decision influences which of the two choices is taken. We show that disparate views on this question are reconciled if distractors exert two opposing but not mutually exclusive effects. Each effect predominates in a different part of decision space: 1) a positive distractor effect predicts high-value distractors improve decision-making; 2) a negative distractor effect, of the type associated with divisive normalisation models, entails decreased accuracy with increased distractor values. Here, we demonstrate both distractor effects coexist in human decision making but in different parts of a decision space defined by the choice values. We show disruption of the medial intraparietal area (MIP) by transcranial magnetic stimulation (TMS) increases positive distractor effects at the expense of negative distractor effects. Furthermore, individuals with larger MIP volumes are also less susceptible to the disruption induced by TMS. These findings also demonstrate a causal link between MIP and the impact of distractors on decision-making via divisive normalization.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tulasi Naga Jyothi Kolanti ◽  
Vasundhara Patel K.S.

Purpose The purpose of this paper is to design multiplexers (MUXs) based on ternary half subtractor and full subtractor using carbon nanotube field-effect transistors. Design/methodology/approach Conventionally, the binary logic functions are developed by using the binary decision diagram (BDD) systems. Each node in BDD is replaced by 2:1 MUX to implement the digital circuits. Similarly, in the ternary decision diagram, each node has to be replaced by 3:1 MUX. In this paper, ternary transformed BDD is used to design the ternary subtractors using 2:1 MUXs. Findings The performance of the proposed ternary half subtractor and full subtractor using the 2:1 MUX are compared with the 3:1 MUX-based ternary circuits. It has been observed that the delay, power and power delay product values are reduced, respectively, by 67.6%, 84.3%, 94.9% for half subtractor and 67.7%, 70.1%, 90.3% for full subtractor. From the Monte Carlo simulations, it is observed that the propagation delay and power dissipation of the proposed subtractors are increased by increasing the channel length due to process variations. The stability test is also performed and observed that the stability increases as the channel length and diameter are increased. Originality/value The proposed half subtractor and full subtractor show better performance over the existing subtractors.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Rocío F. Arellano-Castro ◽  
Enrique Gómez-Treviño

AbstractEstimation of the traditional transverse electric (TE) and transverse magnetic (TM) impedances of the magnetotelluric tensor for two-dimensional structures can be decoupled from the estimation of the strike direction with significant implications when dealing with galvanic distortions. Distortion-free data are obtainable by combining a quadratic equation with the phase tensor. In the terminology of Groom–Bailey, the quadratic equation provides amplitudes and phases that are immune to twist, and the phase tensor provides phases immune to both, twist and shear. On the other hand, distortion-free strike directions can be obtained using Bahr's approach or the phase tensor. In principle, this is all that is needed to proceed to a two-dimensional (2D) interpretation. However, the resulting impedances are strike ignorant because they are invariant under coordinate system rotation, and if they are to be related to a geological strike, they must be linked to a particular direction. This is an additional ambiguity to the one of 90° arising in classic strike-determination methods, which must be resolved independently. In this work, we use the distortion model of Groom–Bailey to resolve the ambiguity by bringing back the coupling between impedances and strike in the presence of galvanic distortions. Our approach is a hybrid between existing numerical and analytical methods that reduces the problem to a binary decision, which involves associating the invariant impedances with the correct TE and TM modes. To determine the appropriate association, we present three algorithms. Two of them require optimizing the fit to the data, and the third one requires a comparison of phases. All three keep track of possible crossings of the phase curves providing a clear-cut solution. Synthetic and field data illustrate the performance of the three schemes. Graphical Abstract


Interpreting ◽  
2021 ◽  
Author(s):  
Chao Han

Abstract In this study, we applied and evaluated a scoring method known as comparative judgement to assess spoken-language interpreting. This methodological exploration represents an extension of previous efforts to optimise scoring methods for assessing interpreting. Essentially, comparative judgement requires judges to compare two similar objects and make a binary decision about their relative qualities. To evaluate its reliability, validity and usefulness in the assessment of interpreting, we recruited two groups of judges (novice and experienced) to assess 66 two-way English/Chinese interpretations based on a computerised comparative judgement system. Our data analysis shows that the new method produced reliable and valid results across judge types and interpreting directions. However, the judges held polarised opinions about the method’s usefulness: while some considered it convenient, efficient and reliable, the opposite view was expressed by others. We discuss the results by providing an integrated analysis of the data collected, outline the perceived drawbacks and propose possible solutions to the drawbacks. We call for more evidence-based, substantive investigation into comparative judgement as a potentially useful method for assessing spoken-language interpreting in certain settings.


2021 ◽  
Vol 21 (9) ◽  
pp. 2373
Author(s):  
Christoph Strauch ◽  
Teresa Hirzle ◽  
Andreas Bulling

Sign in / Sign up

Export Citation Format

Share Document