binary decision diagrams
Recently Published Documents


TOTAL DOCUMENTS

441
(FIVE YEARS 39)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Masaaki Nishino ◽  
Norihito Yasuda ◽  
Kengo Nakamura

Exact cover refers to the problem of finding subfamily F of a given family of sets S whose universe is D, where F forms a partition of D. Knuth’s Algorithm DLX is a state-of-the-art method for solving exact cover problems. Since DLX’s running time depends on the cardinality of input S, it can be slow if S is large. Our proposal can improve DLX by exploiting a novel data structure, DanceDD, which extends the zero-suppressed binary decision diagram (ZDD) by adding links to enable efficient modifications of the data structure. With DanceDD, we can represent S in a compressed way and perform search in linear time with the size of the structure by using link operations. The experimental results show that our method is an order of magnitude faster when the problem is highly compressed.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 172
Author(s):  
Kotaro Matsuda ◽  
Shuhei Denzumi ◽  
Kunihiko Sadakane

Zero-suppressed Binary Decision Diagrams (ZDDs) are data structures for representing set families in a compressed form. With ZDDs, many valuable operations on set families can be done in time polynomial in ZDD size. In some cases, however, the size of ZDDs for representing large set families becomes too huge to store them in the main memory. This paper proposes top ZDD, a novel representation of ZDDs which uses less space than existing ones. The top ZDD is an extension of the top tree, which compresses trees, to compress directed acyclic graphs by sharing identical subgraphs. We prove that navigational operations on ZDDs can be done in time poly-logarithmic in ZDD size, and show that there exist set families for which the size of the top ZDD is exponentially smaller than that of the ZDD. We also show experimentally that our top ZDDs have smaller sizes than ZDDs for real data.


2021 ◽  
Author(s):  
Gianpiero Cabodi ◽  
Paolo E. Camurati ◽  
Alexey Ignatiev ◽  
Joao Marques-Silva ◽  
Marco Palena ◽  
...  

Author(s):  
Lee A. Barnett ◽  
Armin Biere

AbstractState-of-the-art refutation systems for SAT are largely based on the derivation of clauses meeting some redundancy criteria, ensuring their addition to a formula does not alter its satisfiability. However, there are strong propositional reasoning techniques whose inferences are not easily expressed in such systems. This paper extends the redundancy framework beyond clauses to characterize redundancy for Boolean constraints in general. We show this characterization can be instantiated to develop efficiently checkable refutation systems using redundancy properties for Binary Decision Diagrams (BDDs). Using a form of reverse unit propagation over conjunctions of BDDs, these systems capture, for instance, Gaussian elimination reasoning over XOR constraints encoded in a formula, without the need for clausal translations or extension variables. Notably, these systems generalize those based on the strong Propagation Redundancy (PR) property, without an increase in complexity.


Author(s):  
Randal E. Bryant ◽  
Marijn J. H. Heule

AbstractExisting proof-generating quantified Boolean formula (QBF) solvers must construct a different type of proof depending on whether the formula is false (refutation) or true (satisfaction). We show that a QBF solver based on ordered binary decision diagrams (BDDs) can emit a single dual proof as it operates, supporting either outcome. This form consists of a sequence of equivalence-preserving clause addition and deletion steps in an extended resolution framework. For a false formula, the proof terminates with the empty clause, indicating conflict. For a true one, it terminates with all clauses deleted, indicating tautology. Both the length of the proof and the time required to check it are proportional to the total number of BDD operations performed. We evaluate our solver using a scalable benchmark based on a two-player tiling game.


2021 ◽  
pp. 48-61
Author(s):  
Florian Beck ◽  
Johannes Fürnkranz ◽  
Van Quoc Phuong Huynh

Sign in / Sign up

Export Citation Format

Share Document