scholarly journals Complexity Analysis of Generalized and Fractional Hypertree Decompositions

2021 ◽  
Vol 68 (5) ◽  
pp. 1-50
Author(s):  
Georg Gottlob ◽  
Matthias Lanzinger ◽  
Reinhard Pichler ◽  
Igor Razgon

Hypertree decompositions (HDs), as well as the more powerful generalized hypertree decompositions (GHDs), and the yet more general fractional hypertree decompositions (FHDs) are hypergraph decomposition methods successfully used for answering conjunctive queries and for solving constraint satisfaction problems. Every hypergraph H has a width relative to each of these methods: its hypertree width hw(H) , its generalized hypertree width ghw(H) , and its fractional hypertree width fhw(H) , respectively. It is known that hw(H)≤ k can be checked in polynomial time for fixed k , while checking ghw(H)≤ k is NP-complete for k ≥ 3 . The complexity of checking fhw(H)≤ k for a fixed k has been open for over a decade. We settle this open problem by showing that checking fhw(H)≤ k is NP-complete, even for k=2 . The same construction allows us to prove also the NP-completeness of checking ghw(H)≤ k for k=2 . After that, we identify meaningful restrictions that make checking for bounded ghw or fhw tractable or allow for an efficient approximation of the fhw .

2021 ◽  
Author(s):  
Amir El-Aooiti

Although Constraint Satisfaction Problems (CSPs) are generally known to be NP-complete, placing restrictions on the constraint template can yield tractable subclasses. By studying the operations in the polymorphism of the constraint language, we can construct algorithms which solve our CSP in polynomial time. Previous results for CSPs with Mal’tsev [7] and generalized majority-minority operations [10] were improved to include CSPs with k-edge operations [15]. We present an alternative method to solve k-edge CSPs by utilizing Boolean trees placing the problem in the class NC2 . We do this by arranging the logical formulas describing the CSP into a Boolean tree where each leaf represents a constraint in the CSP. We take the conjunction of the constraint formulas yielding partial solutions at every step until we are left with a solution set at the root of the tree which satisfies all of the constraints.


2021 ◽  
Vol 26 ◽  
pp. 1-40
Author(s):  
Wolfgang Fischl ◽  
Georg Gottlob ◽  
Davide Mario Longo ◽  
Reinhard Pichler

To cope with the intractability of answering Conjunctive Queries (CQs) and solving Constraint Satisfaction Problems (CSPs), several notions of hypergraph decompositions have been proposed—giving rise to different notions of width, noticeably, plain, generalized, and fractional hypertree width (hw, ghw, and fhw). Given the increasing interest in using such decomposition methods in practice, a publicly accessible repository of decomposition software, as well as a large set of benchmarks, and a web-accessible workbench for inserting, analyzing, and retrieving hypergraphs are called for. We address this need by providing (i) concrete implementations of hypergraph decompositions (including new practical algorithms), (ii) a new, comprehensive benchmark of hypergraphs stemming from disparate CQ and CSP collections, and (iii) HyperBench, our new web-interface for accessing the benchmark and the results of our analyses. In addition, we describe a number of actual experiments we carried out with this new infrastructure.


2021 ◽  
Author(s):  
Amir El-Aooiti

Although Constraint Satisfaction Problems (CSPs) are generally known to be NP-complete, placing restrictions on the constraint template can yield tractable subclasses. By studying the operations in the polymorphism of the constraint language, we can construct algorithms which solve our CSP in polynomial time. Previous results for CSPs with Mal’tsev [7] and generalized majority-minority operations [10] were improved to include CSPs with k-edge operations [15]. We present an alternative method to solve k-edge CSPs by utilizing Boolean trees placing the problem in the class NC2 . We do this by arranging the logical formulas describing the CSP into a Boolean tree where each leaf represents a constraint in the CSP. We take the conjunction of the constraint formulas yielding partial solutions at every step until we are left with a solution set at the root of the tree which satisfies all of the constraints.


Author(s):  
Marlene Arangú ◽  
Miguel Salido

A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems Constraint programming is a powerful software technology for solving numerous real-life problems. Many of these problems can be modeled as Constraint Satisfaction Problems (CSPs) and solved using constraint programming techniques. However, solving a CSP is NP-complete so filtering techniques to reduce the search space are still necessary. Arc-consistency algorithms are widely used to prune the search space. The concept of arc-consistency is bidirectional, i.e., it must be ensured in both directions of the constraint (direct and inverse constraints). Two of the most well-known and frequently used arc-consistency algorithms for filtering CSPs are AC3 and AC4. These algorithms repeatedly carry out revisions and require support checks for identifying and deleting all unsupported values from the domains. Nevertheless, many revisions are ineffective, i.e., they cannot delete any value and consume a lot of checks and time. In this paper, we present AC4-OP, an optimized version of AC4 that manages the binary and non-normalized constraints in only one direction, storing the inverse founded supports for their later evaluation. Thus, it reduces the propagation phase avoiding unnecessary or ineffective checking. The use of AC4-OP reduces the number of constraint checks by 50% while pruning the same search space as AC4. The evaluation section shows the improvement of AC4-OP over AC4, AC6 and AC7 in random and non-normalized instances.


2015 ◽  
Vol 25 (04) ◽  
pp. 283-298
Author(s):  
Oswin Aichholzer ◽  
Franz Aurenhammer ◽  
Thomas Hackl ◽  
Clemens Huemer ◽  
Alexander Pilz ◽  
...  

Deciding 3-colorability for general plane graphs is known to be an NP-complete problem. However, for certain families of graphs, like triangulations, polynomial time algorithms exist. We consider the family of pseudo-triangulations, which are a generalization of triangulations, and prove NP-completeness for this class. This result also holds if we bound their face degree to four, or exclusively consider pointed pseudo-triangulations with maximum face degree five. In contrast to these completeness results, we show that pointed pseudo-triangulations with maximum face degree four are always 3-colorable. An according 3-coloring can be found in linear time. Some complexity results relating to the rank of pseudo-triangulations are also given.


2010 ◽  
Vol 39 ◽  
pp. 373-427 ◽  
Author(s):  
B. Banerjee ◽  
B. Chandrasekaran

Diagrammatic reasoning (DR) is pervasive in human problem solving as a powerful adjunct to symbolic reasoning based on language-like representations. The research reported in this paper is a contribution to building a general purpose DR system as an extension to a SOAR-like problem solving architecture. The work is in a framework in which DR is modeled as a process where subtasks are solved, as appropriate, either by inference from symbolic representations or by interaction with a diagram, i.e., perceiving specified information from a diagram or modifying/creating objects in a diagram in specified ways according to problem solving needs. The perceptions and actions in most DR systems built so far are hand-coded for the specific application, even when the rest of the system is built using the general architecture. The absence of a general framework for executing perceptions/actions poses as a major hindrance to using them opportunistically -- the essence of open-ended search in problem solving. Our goal is to develop a framework for executing a wide variety of specified perceptions and actions across tasks/domains without human intervention. We observe that the domain/task-specific visual perceptions/actions can be transformed into domain/task-independent spatial problems. We specify a spatial problem as a quantified constraint satisfaction problem in the real domain using an open-ended vocabulary of properties, relations and actions involving three kinds of diagrammatic objects -- points, curves, regions. Solving a spatial problem from this specification requires computing the equivalent simplified quantifier-free expression, the complexity of which is inherently doubly exponential. We represent objects as configuration of simple elements to facilitate decomposition of complex problems into simpler and similar subproblems. We show that, if the symbolic solution to a subproblem can be expressed concisely, quantifiers can be eliminated from spatial problems in low-order polynomial time using similar previously solved subproblems. This requires determining the similarity of two problems, the existence of a mapping between them computable in polynomial time, and designing a memory for storing previously solved problems so as to facilitate search. The efficacy of the idea is shown by time complexity analysis. We demonstrate the proposed approach by executing perceptions and actions involved in DR tasks in two army applications.


Sign in / Sign up

Export Citation Format

Share Document