CHAPTER V: GK-dimension of Modules over Quadric Solvable Polynomial Algebras and Elimination of Variables

Author(s):  
Huishi Li
2000 ◽  
Vol 234 (1) ◽  
pp. 101-127 ◽  
Author(s):  
Li Huishi ◽  
Freddy Van Oystaeyen

2020 ◽  
Vol 30 (3) ◽  
pp. 187-202
Author(s):  
Sergey V. Polin

AbstractThe previous paper was concerned with systems of equations over a certain family 𝓢 of quasigroups. In that work a method of elimination of an outermost variable from the system of equations was suggested and it was shown that further elimination of variables requires that the family 𝓢 of quasigroups satisfy the generalized distributive law (GDL). In this paper we describe families 𝓢 that satisfy GDL. The results are applied to construct classes of easily solvable systems of equations.


2021 ◽  
pp. 1-54
Author(s):  
MANUEL L. REYES ◽  
DANIEL ROGALSKI

Abstract This is a general study of twisted Calabi–Yau algebras that are $\mathbb {N}$ -graded and locally finite-dimensional, with the following major results. We prove that a locally finite graded algebra is twisted Calabi–Yau if and only if it is separable modulo its graded radical and satisfies one of several suitable generalizations of the Artin–Schelter regularity property, adapted from the work of Martinez-Villa as well as Minamoto and Mori. We characterize twisted Calabi–Yau algebras of dimension 0 as separable k-algebras, and we similarly characterize graded twisted Calabi–Yau algebras of dimension 1 as tensor algebras of certain invertible bimodules over separable algebras. Finally, we prove that a graded twisted Calabi–Yau algebra of dimension 2 is noetherian if and only if it has finite GK dimension.


2016 ◽  
Vol 23 (04) ◽  
pp. 701-720 ◽  
Author(s):  
Xiangui Zhao ◽  
Yang Zhang

Differential difference algebras are generalizations of polynomial algebras, quantum planes, and Ore extensions of automorphism type and of derivation type. In this paper, we investigate the Gelfand-Kirillov dimension of a finitely generated module over a differential difference algebra through a computational method: Gröbner-Shirshov basis method. We develop the Gröbner-Shirshov basis theory of differential difference algebras, and of finitely generated modules over differential difference algebras, respectively. Then, via Gröbner-Shirshov bases, we give algorithms for computing the Gelfand-Kirillov dimensions of cyclic modules and finitely generated modules over differential difference algebras.


1995 ◽  
Vol 38 (4) ◽  
pp. 390-395 ◽  
Author(s):  
S. M. Bhatwadekar ◽  
K. P. Russell

AbstractLet k: be a perfect field such that is solvable over k. We show that a smooth, affine, factorial surface birationally dominated by affine 2-space is geometrically factorial and hence isomorphic to . The result is useful in the study of subalgebras of polynomial algebras. The condition of solvability would be unnecessary if a question we pose on integral representations of finite groups has a positive answer.


Author(s):  
Ken A. Brown ◽  
Ken R. Goodearl

2016 ◽  
Vol 95 (2) ◽  
pp. 209-213
Author(s):  
YUEYUE LI ◽  
JIE-TAI YU

Let $A_{2}$ be a free associative algebra or polynomial algebra of rank two over a field of characteristic zero. The main results of this paper are the classification of noninjective endomorphisms of $A_{2}$ and an algorithm to determine whether a given noninjective endomorphism of $A_{2}$ has a nontrivial fixed element for a polynomial algebra. The algorithm for a free associative algebra of rank two is valid whenever an element is given and the subalgebra generated by this element contains the image of the given noninjective endomorphism.


Sign in / Sign up

Export Citation Format

Share Document