S,S,S‐tributyl phosphorotrithioate (DEF, TBPT)

2007 ◽  
pp. 1329-1329
Author(s):  
John M. Fisher ◽  
R. J. Ripperger ◽  
S. M. Kimball ◽  
A. M. Bloomberg

1984 ◽  
Vol 74 (4) ◽  
pp. 677-687 ◽  
Author(s):  
R. J. Wood ◽  
N. Pasteur ◽  
G. Sinégre

AbstractThree French strains of Culex pipiens L. were compared at the fourth larval instar for tolerance to organophosphate and carbamate insecticides, with and without the addition of synergists (the oxidase inhibitors piperonyl butoxide and CGA 84708) (a propynyl compound) and the carboxylesterase inhibitors triphenyl phosphate (TPP) and S,S,S-tributyl phosphorotrithioate (TBPT). The S54 strain was resistant to all the organophosphates tested (chlorpyrifos, malathion, monocrotophos and profenofos) compared to the susceptible LA VIS strain but only slightly tolerant to the two carbamates (carbaryl and naphthyl phenylcarbamate). The MAURIN strain was resistant to all the insecticides, including the carbamates, at a higher level. The action of chlorpyrifos and malathion on S54 was very strongly synergised by TBPT, less strongly by TPP and not at all by piperonyl butoxide. In fact, resistance was enhanced by piperonyl butoxide, as was resistance to monocrotophos and profenofos by CGA 84708. No synergist had much effect on the MAURIN strain, although TPP slightly increased the toxicity of malathion, and piperonyl butoxide and CGA 84708 slightly increased the toxicity of carbaryl. The toxic effect of carbaryl was also increased by the addition of extra acetone. Electrophoretic studies showed that the carboxylesterase enzyme coded by gene Est-20.64 (which is in linkage disequilibrium withEst-3A and acts as a marker for it) was absent from LA VIS but present in the resistant strains; but, whereas S54 was monomorphic for the gene, MAURIN was polymorphic (frequency 0·5). It is concluded that organophosphate resistance in S54 was due to detoxification by carboxylesterase wherease organophosphate and carbamate resistance in MAURIN had a strong non-metabolic component, possibly an insensitive acetylcholinesterase.


1998 ◽  
Vol 88 (2) ◽  
pp. 199-206 ◽  
Author(s):  
A.G. Spencer ◽  
N.R. Price ◽  
A. Callaghan

AbstractA strain of Cryptolestes ferrugineus (Stephens) bred for malathion-specific resistance was found to be 650 fold resistant at LD50 when compared with a susceptible strain bred from the same stock. Resistance was more than 98% synergized by triphenyl phosphate and S,S,S-tributyl phosphorotrithioate, but unaffected by piperonyl butoxide. AChE inhibition by malaoxon varied slightly between the strains. Non-specific esterase activity as measured by the hydrolysis of α-naphthyl acetate was slightly reduced in the resistant strain whereas there were no inter-strain differences in the hydrolysis of β-naphthyl acetate. Products of in vitro metabolism of malathion were identified by thin-layer chromatography and gas chromatography-mass spectrometry as α- and β-malathion mono-acids. It was therefore concluded that resistance was due to the hydrolytic breakdown of malathion by a malathion-specific carboxylesterase. The rate of in vitro malathion hydrolysis was found to be 31 times greater in the resistant strain. In vitro inhibition studies indicated that resistance is attributable to a carboxylesterase unique to the resistant strain. The implications of these results are discussed in relation to work recently carried out on malathion-specific resistance in dipterous species.


Sign in / Sign up

Export Citation Format

Share Document