scholarly journals Boosting Threshold Classifiers for High– Dimensional Data in Functional Genomics

Author(s):  
Ludwig Lausser ◽  
Malte Buchholz ◽  
Hans A. Kestler
Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 205
Author(s):  
Adam Mieldzioc ◽  
Monika Mokrzycka ◽  
Aneta Sawikowska

Modern investigation techniques (e.g., metabolomic, proteomic, lipidomic, genomic, transcriptomic, phenotypic), allow to collect high-dimensional data, where the number of observations is smaller than the number of features. In such cases, for statistical analyzing, standard methods cannot be applied or lead to ill-conditioned estimators of the covariance matrix. To analyze the data, we need an estimator of the covariance matrix with good properties (e.g., positive definiteness), and therefore covariance matrix identification is crucial. The paper presents an approach to determine the block-structured estimator of the covariance matrix based on an example of metabolomic data on the drought resistance of barley. This method can be used in many fields of science, e.g., in agriculture, medicine, food and nutritional sciences, toxicology, functional genomics and nutrigenomics.


2009 ◽  
Vol 35 (7) ◽  
pp. 859-866
Author(s):  
Ming LIU ◽  
Xiao-Long WANG ◽  
Yuan-Chao LIU

Author(s):  
Punit Rathore ◽  
James C. Bezdek ◽  
Dheeraj Kumar ◽  
Sutharshan Rajasegarar ◽  
Marimuthu Palaniswami

Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Hsiuying Wang

High-dimensional data recognition problem based on the Gaussian Mixture model has useful applications in many area, such as audio signal recognition, image analysis, and biological evolution. The expectation-maximization algorithm is a popular approach to the derivation of the maximum likelihood estimators of the Gaussian mixture model (GMM). An alternative solution is to adopt a generalized Bayes estimator for parameter estimation. In this study, an estimator based on the generalized Bayes approach is established. A simulation study shows that the proposed approach has a performance competitive to that of the conventional method in high-dimensional Gaussian mixture model recognition. We use a musical data example to illustrate this recognition problem. Suppose that we have audio data of a piece of music and know that the music is from one of four compositions, but we do not know exactly which composition it comes from. The generalized Bayes method shows a higher average recognition rate than the conventional method. This result shows that the generalized Bayes method is a competitor to the conventional method in this real application.


Sign in / Sign up

Export Citation Format

Share Document