A Population-Based Local Search for Solving a Bi-objective Vehicle Routing Problem

Author(s):  
Joseph M. Pasia ◽  
Karl F. Doerner ◽  
Richard F. Hartl ◽  
Marc Reimann
2018 ◽  
Vol 89 ◽  
pp. 68-81 ◽  
Author(s):  
Túlio A.M. Toffolo ◽  
Jan Christiaens ◽  
Sam Van Malderen ◽  
Tony Wauters ◽  
Greet Vanden Berghe

2018 ◽  
Vol 9 (1) ◽  
pp. 3 ◽  
Author(s):  
Malichan Thongkham ◽  
Sasitorn Kaewman

This article presents algorithms for solving a special case of the vehicle routing problem (VRP). We define our proposed problem of a special VRP case as a combination of two hard problems: the generalized assignment and the vehicle routing problem. The different evolution (DE) algorithm is used to solve the problem. The recombination process of the original DE is modified by adding two more sets of vectors—best vector and random vector—and using two other sets—target vector and trial vector. The linear probability formula is proposed to potentially use one out of the four sets of vectors. This is called the modified DE (MDE) algorithm. Two local searches are integrated into the MDE algorithm: exchange and insert. These procedures create a DE and MDE that use (1) no local search techniques, (2) two local search techniques, (3) only the exchange procedure, and (4) only the insert procedure. This generates four DE algorithms and four MDE algorithms. The proposed methods are tested with 15 tested instances and one case study. The current procedure is compared with all proposed heuristics. The computational result shows that, in the case study, the best DE algorithm (DE-4) has a 1.6% better solution than that of the current practice, whereas the MDE algorithm is 8.2% better. The MDE algorithm that uses the same local search as the DE algorithms generates a maximum 5.814% better solution than that of the DE algorithms.


2019 ◽  
Vol 11 (21) ◽  
pp. 6055 ◽  
Author(s):  
Bo Peng ◽  
Yuan Zhang ◽  
Yuvraj Gajpal ◽  
Xiding Chen

The green vehicle routing problem is a variation of the classic vehicle routing problem in which the transportation fleet is composed of electric vehicles with limited autonomy in need of recharge during their duties. As an NP-hard problem, this problem is very difficult to solve. In this paper, we first propose a memetic algorithm (MA)—a population-based algorithm—to tackle this problem. To be more specific, we incorporate an adaptive local search procedure based on a reward and punishment mechanism inspired by reinforcement learning to effectively manage the multiple neighborhood moves and guide the search, an effective backbone-based crossover operator to generate the feasible child solutions to obtain a better trade-off between intensification and diversification of the search, and a longest common subsequence-based population updating strategy to effectively manage the population. The purpose of this research is to propose a highly effective heuristic for solving the green vehicle routing problem and bring new ideas for this type of problem. Experimental results show that our algorithm is highly effective in comparison with the current state-of-the-art algorithms. In particular, our algorithm is able to find the best solutions for 84 out of the 92 instances. Key component of the approach is analyzed to evaluate its impact on the proposed algorithm and to identify the appropriate search mechanism for this type of problem.


Sign in / Sign up

Export Citation Format

Share Document