synchronization constraints
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Shengyang Jia ◽  
Lei Deng ◽  
Quanwu Zhao ◽  
Yunkai Chen

<p style='text-indent:20px;'>In considering route optimization from multiple distribution centers called depots via some intermediate facilities called satellites to final customers with multiple commodities request, we introduce the Multi-Commodity Two-Echelon Vehicle Routing Problem with Satellite Synchronization (MC-2E-VRPSS). The MC-2E-VRPSS involves the transportation from multiple depots to satellites on the first echelon and the deliveries from satellites to final customers on the second echelon. The MC-2E-VRPSS integrates satellite synchronization constraints and time window constraints for satellites on the two-echelon network and aims to determine cost-minimizing routes for the two echelons. The satellite synchronization constraints which trucks from the multiple depots to some satellites need to be coordinated guarantee the efficiency of the second echelon network. In this study, we develop a mixed-integer programming model for the MC-2E-VRPSS. For validating the model formulation, we conduct the computational experiments on a set of small-scale instances using GUROBI and an adaptive large neighborhood search (ALNS) heuristic which we develop for the problem. Furthermore, the computation experiments for evaluating the applicability of the ALNS heuristic compared with large neighborhood search (LNS) on a set of large-scale instances are also conducted, which proved the effectiveness of the ALNS.</p>


Author(s):  
Alexander Jungwirth ◽  
Guy Desaulniers ◽  
Markus Frey ◽  
Rainer Kolisch

We study a new variant of the vehicle routing problem, which arises in hospital-wide scheduling of physical therapists. Multiple service locations exist for patients, and resource synchronization for the location capacities is required as only a limited number of patients can be treated at one location at a time. Additionally, operations synchronization between treatments is required as precedence relations exist. We develop an innovative exact branch-price-and-cut algorithm including two approaches targeting the synchronization constraints (1) based on branching on time windows and (2) based on adding combinatorial Benders cuts. We optimally solve realistic hospital instances with up to 120 treatments and find that branching on time windows performs better than adding cutting planes. Summary of Contribution: We present an exact branch-price-and-cut (BPC) algorithm for the therapist scheduling and routing problem (ThSRP), a daily planning problem arising at almost every hospital. The difficulty of this problem stems from its inherent structure that features routing and scheduling while considering multiple possible service locations with time-dependent location capacities. We model the ThSRP as a vehicle routing problem with time windows and flexible delivery locations and synchronization constraints, which are properties relevant to other vehicle routing problem variants as well. In our computational study, we show that the proposed exact BPC algorithm is capable of solving realistic hospital instances and can, thus, be used by hospital planners to derive better schedules with less manual work. Moreover, we show that time window branching can be a valid alternative to cutting planes when addressing synchronization constraints in a BPC algorithm.


Author(s):  
Erhun Özkan

A fork-join processing network is a queueing network in which tasks associated with a job can be processed simultaneously. Fork-join processing networks are prevalent in computer systems, healthcare, manufacturing, project management, justice systems, and so on. Unlike the conventional queueing networks, fork-join processing networks have synchronization constraints that arise because of the parallel processing of tasks and can cause significant job delays. We study scheduling in fork-join processing networks with multiple job types and parallel shared resources. Jobs arriving in the system fork into arbitrary number of tasks, then those tasks are processed in parallel, and then they join and leave the network. There are shared resources processing multiple job types. We study the scheduling problem for those shared resources (i.e., which type of job to prioritize at any given time) and propose an asymptotically optimal scheduling policy in diffusion scale.


2021 ◽  
Author(s):  
Erhun Özkan

We study scheduling control of parallel processing networks in which some resources need to simultaneously collaborate to perform some activities and some resources multitask. Resource collaboration and multitasking give rise to synchronization constraints in resource scheduling when the resources are not divisible, that is, when the resources cannot be split. The synchronization constraints affect the system performance significantly. For example, because of those constraints, the system capacity can be strictly less than the capacity of the bottleneck resource. Furthermore, the resource scheduling decisions are not trivial under those constraints. For example, not all static prioritization policies retain the maximum system capacity, and the ones that retain the maximum system capacity do not necessarily minimize the delay (or, in general, the holding cost). We study optimal scheduling control of a class of parallel networks and propose a dynamic prioritization policy that retains the maximum system capacity and is asymptotically optimal in diffusion scale and a conventional heavy-traffic regime with respect to the expected discounted total holding cost objective.


2021 ◽  
pp. 105316
Author(s):  
Ingeborg Margrete Lianes ◽  
Maren Theisen Noreng ◽  
Kjetil Fagerholt ◽  
Hans Tobias Slette ◽  
Frank Meisel

Author(s):  
Naima Beladam ◽  
Abdelghani Ghomari

In this paper, we study the problem of synchronization management in hypermedia documents where we proposed a formal approach inspired by separation logic to analyze and correct progressively the temporal, spatial and hypermedia synchronization constraints. For that purpose, we have developed a tool named Hypermedia Document Builder (HDB) to help the authors to design and verify easily all the hypermedia documents constraints’ errors. So, the latter is presented immediately during the design phase to facilitate their correction and to minimize their number. Our HDB tool permits also to adapt the analyzed hypermedia documents to its different standard web presentation formats such as: HTML5 or SMIL 3.0. Finally, the HDB tool has been compared with tools of similar nature of recent related works and the results show that the proposed tool advances the design of such tools.


Sign in / Sign up

Export Citation Format

Share Document