An Agglomerative Hierarchical Clustering Algorithm for Improving Symbolic Object Retrieval

Author(s):  
Floriana Esposito ◽  
Claudia d’Amato
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 370
Author(s):  
Shuangsheng Wu ◽  
Jie Lin ◽  
Zhenyu Zhang ◽  
Yushu Yang

The fuzzy clustering algorithm has become a research hotspot in many fields because of its better clustering effect and data expression ability. However, little research focuses on the clustering of hesitant fuzzy linguistic term sets (HFLTSs). To fill in the research gaps, we extend the data type of clustering to hesitant fuzzy linguistic information. A kind of hesitant fuzzy linguistic agglomerative hierarchical clustering algorithm is proposed. Furthermore, we propose a hesitant fuzzy linguistic Boole matrix clustering algorithm and compare the two clustering algorithms. The proposed clustering algorithms are applied in the field of judicial execution, which provides decision support for the executive judge to determine the focus of the investigation and the control. A clustering example verifies the clustering algorithm’s effectiveness in the context of hesitant fuzzy linguistic decision information.


Author(s):  
Yukihiro Hamasuna ◽  
◽  
Yasunori Endo ◽  
Sadaaki Miyamoto ◽  

This paper presents semi-supervised agglomerative hierarchical clustering algorithm using clusterwise tolerance based pairwise constraints. In semi-supervised clustering, pairwise constraints, that is, must-link and cannot-link, are frequently used in order to improve clustering properties. From that sense, we will propose another way named clusterwise tolerance based pairwise constraints to handle must-link and cannot-link constraints inL2-space. In addition, we will propose semi-supervised agglomerative hierarchical clustering algorithm based on it. We will, moreover, show the effectiveness of the proposed method through numerical examples.


Sign in / Sign up

Export Citation Format

Share Document