Rates of Weak Convergence of Estimators in the Ornstein-Uhlenbeck Process

1982 ◽  
Vol 19 (2) ◽  
pp. 450-455 ◽  
Author(s):  
W. G. Cumberland ◽  
Z. M. Sykes

Under simple limiting conditions a first-order autoregressive process is shown to converge weakly to an Ornstein-Uhlenbeck process. The result is discussed in the context of modeling vital rates for biological populations in random environments.


1982 ◽  
Vol 19 (02) ◽  
pp. 450-455 ◽  
Author(s):  
W. G. Cumberland ◽  
Z. M. Sykes

Under simple limiting conditions a first-order autoregressive process is shown to converge weakly to an Ornstein-Uhlenbeck process. The result is discussed in the context of modeling vital rates for biological populations in random environments.


2020 ◽  
Vol 23 (2) ◽  
pp. 450-483 ◽  
Author(s):  
Giacomo Ascione ◽  
Yuliya Mishura ◽  
Enrica Pirozzi

AbstractWe define a time-changed fractional Ornstein-Uhlenbeck process by composing a fractional Ornstein-Uhlenbeck process with the inverse of a subordinator. Properties of the moments of such process are investigated and the existence of the density is shown. We also provide a generalized Fokker-Planck equation for the density of the process.


2017 ◽  
Vol 429 ◽  
pp. 35-45 ◽  
Author(s):  
Krzysztof Bartoszek ◽  
Sylvain Glémin ◽  
Ingemar Kaj ◽  
Martin Lascoux

Sign in / Sign up

Export Citation Format

Share Document