Other Transport Properties of Porous Media

Author(s):  
Allen Hunt ◽  
Robert Ewing
2016 ◽  
Author(s):  
Bahador Najafiazar ◽  
Juan Yang ◽  
Christian Rone Simon ◽  
Fuad Karimov ◽  
Ole Torsæter ◽  
...  

1993 ◽  
Vol 48 (5) ◽  
pp. 951-972 ◽  
Author(s):  
Marios A. Ioannidis ◽  
Ioannis Chatzis

Author(s):  
C. Baudet ◽  
E. Charlaix ◽  
E. Clément ◽  
E. Guyon ◽  
J. P. Hulin ◽  
...  

Fractals ◽  
2004 ◽  
Vol 12 (01) ◽  
pp. 17-22 ◽  
Author(s):  
BOMING YU ◽  
JIANHUA LI

The analytical expressions of the fractal dimensions for wetting and non-wetting phases for unsaturated porous media are derived and are found to be a function of porosity, maximum and minimum pore sizes as well as saturation. There is no empirical constant in the proposed fractal dimensions. It is also found that the fractal dimensions increase with porosity of a medium and are meaningful only in a certain range of saturation Sw, i.e. Sw>S min for wetting phase and Sw<S max for non-wetting phase at a given porosity, based on real porous media for requirements from both fractal theory and experimental observations. The present analysis of the fractal dimensions is verified to be consistent with the existing experimental observations and it makes possible to analyze the transport properties such as permeability, thermal dispersion in unsaturated porous media by fractal theory and technique.


Sign in / Sign up

Export Citation Format

Share Document