diffusive transport
Recently Published Documents


TOTAL DOCUMENTS

580
(FIVE YEARS 73)

H-INDEX

46
(FIVE YEARS 5)

Author(s):  
Alraune Zech ◽  
Matthijs de Winter

AbstractWe investigate the upscaling of diffusive transport parameters using a stochastic framework. At sub-REV (representative elementary volume) scale, the complexity of the pore space geometry leads to a significant scatter of the observed diffusive transport. We study a large set of volumes reconstructed from focused ion beam-scanning electron microscopy data. Each individual volume provides us sub-REV measurements on porosity and the so-called transport-ability, being a dimensionless parameter representing the ratio of diffusive flux through the porous volume to that through an empty volume. The detected scatter of the transport-ability is mathematically characterized through a probability distribution function (PDF) with a mean and variance as function of porosity, which includes implicitly the effect of pore structure differences among sub-REV volumes. We then investigate domain size effects and predict when REV scale is reached. While the scatter in porosity observations decreases linearly with increasing sample size as expected, the observed scatter in transport-ability does not converge to zero. Our results confirm that differences in pore structure impact transport parameters at all scales. Consequently, the use of PDFs to describe the relationship of effective transport coefficients to porosity is advantageous to deterministic semiempirical functions. We discuss the consequences and advocate the use of PDFs for effective parameters in both continuum equations and data interpretation of experimental or computational work. The presented statistics-based upscaling technique of sub-REV microscopy data provides a new tool in understanding, describing and predicting macroscopic transport behavior of microporous media.


Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 41-64
Author(s):  
Berit Schwichtenberg ◽  
Florian Fusseis ◽  
Ian B. Butler ◽  
Edward Andò

Abstract. Phyllosilicates are generally regarded to have a reinforcing effect on chemical compaction by dissolution–precipitation creep (DPC) and thereby influence the evolution of hydraulic rock properties relevant to groundwater resources and geological repositories as well as fossil fuel reservoirs. We conducted oedometric compaction experiments on layered NaCl–biotite samples to test this assumption. In particular, we aim to analyse slow chemical compaction processes in the presence of biotite on the grain scale and determine the effects of chemical and mechanical feedbacks. We used time-resolved (4-D) microtomographic data to capture the dynamic evolution of the porosity in layered NaCl–NaCl/biotite samples over 1619 and 1932 h of compaction. Percolation analysis in combination with advanced digital volume correlation techniques showed that biotite grains influence the dynamic evolution of porosity in the sample by promoting a reduction of porosity in their vicinity. However, the lack of preferential strain localisation around phyllosilicates and a homogeneous distribution of axial shortening across the sample suggests that the porosity reduction is not achieved by pore collapse but by the precipitation of NaCl sourced from outside the NaCl–biotite layer. Our observations invite a renewed discussion of the effect of phyllosilicates on DPC, with a particular emphasis on the length scales of the processes involved. We propose that, in our experiments, the diffusive transport processes invoked in classical theoretical models of DPC are complemented by chemo-mechanical feedbacks that arise on longer length scales. These feedbacks drive NaCl diffusion from the marginal pure NaCl layers into the central NaCl–biotite mixture over distances of several hundred micrometres and several grain diameters. Such a mechanism was first postulated by Merino et al. (1983).


Author(s):  
Brahim K. Benazzouz ◽  
Khac Hieu Ho ◽  
Phuoc The Nguyen ◽  
Hai Hoang ◽  
Guillaume Galliero

2021 ◽  
Author(s):  
Olivier Sulpis ◽  
Priyanka Agrawal ◽  
Mariette Wolthers ◽  
Guy Munhoven ◽  
Matthew Walker ◽  
...  

Abstract In the open ocean, calcium carbonates are mainly found in two mineral forms. Calcite, the least soluble, is widespread at the seafloor, while aragonite, the more soluble, is rarely preserved in marine sediments. Despite its greater solubility, research has shown that aragonite, which could contribute between 10 and 90% to pelagic calcium carbonate production, is able to reach the deep-ocean. If large quantities of aragonite settle and dissolve at the seafloor, this represents a large source of alkalinity that buffers the deep ocean and favours the preservation of less soluble calcite, acting as a deep-sea, carbonate version of galvanization. Here, we investigate the role of aragonite dissolution on the early diagenesis of calcite-rich sediments using a novel 3D, micrometric-scale reactive-transport model combined with 3D, X-ray tomography structures of natural aragonite and calcite shells. Results highlight the important role of diffusive transport in benthic calcium carbonate dissolution, in agreement with recent work. We show that, locally, aragonite fluxes to the seafloor could be sufficient to suppress calcite dissolution in the top layer of the seabed, possibly causing calcite recrystallization. As aragonite producers are particularly vulnerable to ocean acidification, the proposed galvanizing effect of aragonite could be weakened in the future, indirectly boosting calcite dissolution further.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2456
Author(s):  
Florian Ranzinger ◽  
Karin Schröter ◽  
Harald Horn ◽  
Michael Wagner

Microorganisms settle in diverse partially saturated porous media in the form of biofilms. The alteration of hydraulic properties and diffusive transport processes occurs simultaneously with biofilm growth in porous media. Imaging methods offer the ability to directly visualize and quantify alterations on the pore scale. However, imaging methods have mainly observed biofilm growth in completely saturated porous media. The current study used magnetic resonance imaging (MRI) to dynamically visualize biofilm growth within a porous medium under alternating drainage and flushing events. Prior to the MRI experiments, the sample was cultivated for 6 days within a porous medium consisting of 2 mm glass spheres. Starting from day 6, growth was monitored using MRI over a period of 7 days. The approach allowed for a visualization of all fractions (biofilm, water, air, and porous material) after drainage as well as flushing events. Biofilm was found to preferentially grow within permanently wetted areas situated next to pore throats. Furthermore, an increase in the water retention and connectivity of the liquid phase was found. The largest liquid cluster covered 11% (day 6) and 91% (day 12) of the total retained water, suggesting that biofilm growth might improve diffusive transport processes within partially saturated porous media.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 664
Author(s):  
Andreas Jenni ◽  
Urs Mäder

Strong chemical gradients between clay and concrete porewater lead to diffusive transport across the interface and subsequent mineral reactions in both materials. These reactions may influence clay properties such as swelling behaviour, permeability or radionuclide retention, which are relevant for the safety of a radioactive waste repository. Different cement types lead to different interactions with Opalinus Clay (OPA), which must be understood to choose the most suitable material. The consideration of anion-depleted porosity due to electrostatic repulsion in clay modelling substantially influences overall diffusive transport and pore clogging at interfaces. The identical dual porosity model approach previously used to predict interaction between Portland cement and OPA is now applied to low-alkali cement—OPA interaction. The predictions are compared with corresponding samples from the cement-clay interaction (CI) experiment in the Mont Terri underground rock laboratory (Switzerland). Predicted decalcification of the cement at the interface (depletion of C–S–H and absence of ettringite within 1 mm from the interface), the Mg enrichment in clay and cement close to the interface (neoformation of up to 17 vol% Mg hydroxides in concrete, and up to 6 vol% in OPA within 0.6 mm at the interface), and the slightly increased S content in the cement 3–4 mm away from the interface qualitatively match the sample characterisation. Simulations of Portland cement—OPA interaction indicate a weaker chemical disturbance over a larger distance compared with low-pH cement—OPA. In the latter case, local changes in porosity are stronger and lead to predicted pore clogging.


2021 ◽  
Author(s):  
Berit Ina Schwichtenberg ◽  
Florian Fusseis ◽  
Ian B. Butler ◽  
Edward Andò

Abstract. Phyllosilicates are generally regarded to have a reinforcing effect on chemical compaction by dissolution-precipitation creep (DPC) and thereby influence the evolution of hydraulic rock properties relevant to groundwater resources, geological repositories as well as fossil fuel reservoirs. We conducted oedometric compaction experiments on layered NaCl-biotite samples to test this assumption. In particular, we aim to analyse slow chemical compaction processes in the presence of biotite on the grain scale and determine the effects of chemical and mechanical feedbacks. We used time-resolved (4D) microtomographic data to capture the dynamic evolution of the transport properties in layered NaCl-NaCl/biotite samples over 1619 and1932 hours of compaction. Percolation analysis in combination with advanced digital volume correlation techniques showed that biotite grains influence the dynamic evolution of porosity in the sample by promoting a reduction of porosity in their vicinity. However, the lack of preferential strain localisation around phyllosilicates and a homogeneous distribution of axial shortening across the sample suggests that the porosity reduction is not achieved by pore collapse but by the precipitation of NaCl sourced from outside the NaCl/biotite layer. Our observations invite a renewed discussion of the effect of phyllosilicates on DPC, with a particular emphasis on the length scales of the processes involved. We propose that, in our experiments, the diffusive transport processes invoked in classical theoretical models of DPC are superseded by chemo-mechanical feedbacks that arise on longer length scales. These feedbacks drive NaCl diffusion from the marginal pure NaCl layers into the central NaCl-biotite mixture over distances of several hundredμm and several grain diameters. Such a mechanism was first postulated by Merino et al. (1983)


Author(s):  
Antonia Kowalewski ◽  
Nancy R. Forde ◽  
Chapin S. Korosec
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document