Information Geometry and Its Applications: Convex Function and Dually Flat Manifold

Author(s):  
Shun-ichi Amari
2004 ◽  
Vol 16 (7) ◽  
pp. 1437-1481 ◽  
Author(s):  
Noboru Murata ◽  
Takashi Takenouchi ◽  
Takafumi Kanamori ◽  
Shinto Eguchi

We aim at an extension of AdaBoost to U-Boost, in the paradigm to build a stronger classification machine from a set of weak learning machines. A geometric understanding of the Bregman divergence defined by a generic convex function U leads to the U-Boost method in the framework of information geometry extended to the space of the finite measures over a label set. We propose two versions of U-Boost learning algorithms by taking account of whether the domain is restricted to the space of probability functions. In the sequential step, we observe that the two adjacent and the initial classifiers are associated with a right triangle in the scale via the Bregman divergence, called the Pythagorean relation. This leads to a mild convergence property of the U-Boost algorithm as seen in the expectation-maximization algorithm. Statistical discussions for consistency and robustness elucidate the properties of the U-Boost methods based on a stochastic assumption for training data.


1983 ◽  
Vol 20 (04) ◽  
pp. 835-842
Author(s):  
David Assaf

The paper presents sufficient conditions for certain functions to be convex. Functions of this type often appear in Markov decision processes, where their maximum is the solution of the problem. Since a convex function takes its maximum at an extreme point, the conditions may greatly simplify a problem. In some cases a full solution may be obtained after the reduction is made. Some illustrative examples are discussed.


2004 ◽  
Vol 11 (04) ◽  
pp. 359-375 ◽  
Author(s):  
R. F. Streater

Let H0 be a selfadjoint operator such that Tr e−βH0 is of trace class for some β < 1, and let χɛ denote the set of ɛ-bounded forms, i.e., ∥(H0+C)−1/2−ɛX(H0+C)−1/2+ɛ∥ < C for some C > 0. Let χ := Span ∪ɛ∈(0,1/2]χɛ. Let [Formula: see text] denote the underlying set of the quantum information manifold of states of the form ρx = e−H0−X−ψx, X ∈ χ. We show that if Tr e−H0 = 1. 1. the map Φ, [Formula: see text] is a quantum Young function defined on χ 2. The Orlicz space defined by Φ is the tangent space of [Formula: see text] at ρ0; its affine structure is defined by the (+1)-connection of Amari 3. The subset of a ‘hood of ρ0, consisting of p-nearby states (those [Formula: see text] obeying C−1ρ1+p ≤ σ ≤ Cρ1 − p for some C > 1) admits a flat affine connection known as the (−1) connection, and the span of this set is part of the cotangent space of [Formula: see text] 4. These dual structures extend to the completions in the Luxemburg norms.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 966
Author(s):  
Anna Dobosz ◽  
Piotr Jastrzębski ◽  
Adam Lecko

In this paper we study a certain differential subordination related to the harmonic mean and its symmetry properties, in the case where a dominant is a linear function. In addition to the known general results for the differential subordinations of the harmonic mean in which the dominant was any convex function, one can study such differential subordinations for the selected convex function. In this case, a reasonable and difficult issue is to look for the best dominant or one that is close to it. This paper is devoted to this issue, in which the dominant is a linear function, and the differential subordination of the harmonic mean is a generalization of the Briot–Bouquet differential subordination.


Author(s):  
Syed Zaheer Ullah ◽  
Muhammad Adil Khan ◽  
Yu-Ming Chu

Abstract In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $(\eta _{1}, \eta _{2})$(η1,η2)-convex function and establish its Hermite–Hadamard type inequality.


2020 ◽  
Vol 53 (2) ◽  
pp. 2471-2476
Author(s):  
Yangguang Yu ◽  
Xiangke Wang ◽  
Lincheng Shen

Entropy ◽  
2018 ◽  
Vol 20 (4) ◽  
pp. 256 ◽  
Author(s):  
Xiaoqiang Hua ◽  
Haiyan Fan ◽  
Yongqiang Cheng ◽  
Hongqiang Wang ◽  
Yuliang Qin

2020 ◽  
Vol 9 (3) ◽  
pp. 613-631
Author(s):  
Khuram Ali Khan ◽  
Tasadduq Niaz ◽  
Đilda Pečarić ◽  
Josip Pečarić

Abstract In this work, some new functional of Jensen-type inequalities are constructed using Shannon entropy, f-divergence, and Rényi divergence, and some estimates are obtained for these new functionals. Also using the Zipf–Mandelbrot law and hybrid Zipf–Mandelbrot law, we investigate some bounds for these new functionals. Furthermore, we generalize these new functionals for m-convex function using Lidstone polynomial.


Sign in / Sign up

Export Citation Format

Share Document