scholarly journals Quantum Orlicz Spaces in Information Geometry

2004 ◽  
Vol 11 (04) ◽  
pp. 359-375 ◽  
Author(s):  
R. F. Streater

Let H0 be a selfadjoint operator such that Tr e−βH0 is of trace class for some β < 1, and let χɛ denote the set of ɛ-bounded forms, i.e., ∥(H0+C)−1/2−ɛX(H0+C)−1/2+ɛ∥ < C for some C > 0. Let χ := Span ∪ɛ∈(0,1/2]χɛ. Let [Formula: see text] denote the underlying set of the quantum information manifold of states of the form ρx = e−H0−X−ψx, X ∈ χ. We show that if Tr e−H0 = 1. 1. the map Φ, [Formula: see text] is a quantum Young function defined on χ 2. The Orlicz space defined by Φ is the tangent space of [Formula: see text] at ρ0; its affine structure is defined by the (+1)-connection of Amari 3. The subset of a ‘hood of ρ0, consisting of p-nearby states (those [Formula: see text] obeying C−1ρ1+p ≤ σ ≤ Cρ1 − p for some C > 1) admits a flat affine connection known as the (−1) connection, and the span of this set is part of the cotangent space of [Formula: see text] 4. These dual structures extend to the completions in the Luxemburg norms.

2004 ◽  
Vol 11 (01) ◽  
pp. 71-77 ◽  
Author(s):  
R. F. Streater

Let [Formula: see text] be a separable Hilbert space. We consider the manifold [Formula: see text] consisting of density operators ρ on [Formula: see text] such that ρp is of trace class for some p ɛ (0, 1). We say [Formula: see text] is nearby ρ if there exists C > 1 such that C−1 ρ < σ < Cρ. We show that the space of nearby points to ρ can be furnished with the two flat connections known as the (±)-affine structures, which are dual relative to the BKM metric. We furnish [Formula: see text] with a norm making it into a Banach manifold.


2021 ◽  
Vol 13 (2) ◽  
pp. 326-339
Author(s):  
H.H. Bang ◽  
V.N. Huy

In this paper, we investigate the behavior of the sequence of $L^\Phi$-norm of functions, which are generated by differential and integral operators through their spectra (the support of the Fourier transform of a function $f$ is called its spectrum and denoted by sp$(f)$). With $Q$ being a polynomial, we introduce the notion of $Q$-primitives, which will return to the notion of primitives if ${Q}(x)= x$, and study the behavior of the sequence of norm of $Q$-primitives of functions in Orlicz space $L^\Phi(\mathbb R^n)$. We have the following main result: let $\Phi $ be an arbitrary Young function, ${Q}({\bf x} )$ be a polynomial and $(\mathcal{Q}^mf)_{m=0}^\infty \subset L^\Phi(\mathbb R^n)$ satisfies $\mathcal{Q}^0f=f, {Q}(D)\mathcal{Q}^{m+1}f=\mathcal{Q}^mf$ for $m\in\mathbb{Z}_+$. Assume that sp$(f)$ is compact and $sp(\mathcal{Q}^{m}f)= sp(f)$ for all $m\in \mathbb{Z}_+.$ Then $$ \lim\limits_{m\to \infty } \|\mathcal{Q}^m f\|_{\Phi}^{1/m}= \sup\limits_{{\bf x} \in sp(f)} \bigl|1/ {Q}({\bf x}) \bigl|. $$ The corresponding results for functions generated by differential operators and integral operators are also given.


1980 ◽  
Vol 32 (6) ◽  
pp. 1288-1298
Author(s):  
George A. Elliott

A positive bounded selfadjoint operator is in the trace class of von Neumann and Schatten ([4]) if the sum of its diagonal matrix elements with respect to some orthonormal basis is finite, and the trace is then defined to be this sum, which is independent of the basis. A bounded selfadjoint but not necessarily positive operator x is in the trace class if in the decomposition x = x+ – x−, with x+ and x− positive and x+x− = 0, both x+ and x−are in the trace class; the trace of x is then defined to be the difference of the finite traces of x+ and x−. The trace defined in this way is a linear functional on the trace class, and is unitarily invariant; if u is a unitary operator, the trace of uxu−1 is the same as the trace of x.


Author(s):  
M. R. GRASSELLI ◽  
R. F. STREATER

We show that, in finite dimensions, the only monotone metrics on the space of invertible density matrices for which the (+1) and (-1) affine connections are mutually dual are constant multiples of the Bogoliubov–Kubo–Mori metric.


Author(s):  
ANNA JENČOVÁ

Let M be a von Neumann algebra. We define the noncommutative extension of information geometry by embeddings of M into noncommutative Lp-spaces. Using the geometry of uniformly convex Banach spaces and duality of the Lp and Lq spaces for 1/p +1/q =1, we show that we can introduce the α-divergence, for α∈(-1, 1), in a similar manner as Amari in the classical case. If restricted to the positive cone, the α-divergence belongs to the class of quasi-entropies, defined by Petz.


2000 ◽  
Vol 11 (03) ◽  
pp. 305-365 ◽  
Author(s):  
SUHYOUNG CHOI

An affine manifold is a manifold with an affine structure, i.e. a torsion-free flat affine connection. We show that the universal cover of a closed affine 3-manifold M with holonomy group of shrinkable dimension (or discompacité in French) less than or equal to two is diffeomorphic to R3. Hence, M is irreducible. This follows from two results: (i) a simply connected affine 3-manifold which is 2-convex is diffeomorphic to R3, whose proof using the Morse theory takes most of this paper; and (ii) a closed affine manifold of holonomy of shrinkable dimension less or equal to d is d-convex. To prove (i), we show that 2-convexity is a geometric form of topological incompressibility of level sets. As a consequence, we show that the universal cover of a closed affine three-manifold with parallel volume form is diffeomorphic to R3, a part of the weak Markus conjecture. As applications, we show that the universal cover of a hyperbolic 3-manifold with cone-type singularity of arbitrarily assigned cone-angles along a link removed with the singular locus is diffeomorphic to R3. A fake cell has an affine structure as shown by Gromov. Such a cell must have a concave point at the boundary.


2021 ◽  
Vol 136 (5) ◽  
Author(s):  
F. M. Ciaglia ◽  
S. Mancini ◽  
M. Ha Quang

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 269 ◽  
Author(s):  
James Stokes ◽  
Josh Izaac ◽  
Nathan Killoran ◽  
Giuseppe Carleo

A quantum generalization of Natural Gradient Descent is presented as part of a general-purpose optimization framework for variational quantum circuits. The optimization dynamics is interpreted as moving in the steepest descent direction with respect to the Quantum Information Geometry, corresponding to the real part of the Quantum Geometric Tensor (QGT), also known as the Fubini-Study metric tensor. An efficient algorithm is presented for computing a block-diagonal approximation to the Fubini-Study metric tensor for parametrized quantum circuits, which may be of independent interest.


Sign in / Sign up

Export Citation Format

Share Document