Repeated Root Cyclic and Negacyclic Codes over Galois Rings

Author(s):  
Sergio R. López-Permouth ◽  
Steve Szabo
2021 ◽  
Vol 28 (04) ◽  
pp. 581-600
Author(s):  
Hai Q. Dinh ◽  
Hualu Liu ◽  
Roengchai Tansuchat ◽  
Thang M. Vo

Negacyclic codes of length [Formula: see text] over the Galois ring [Formula: see text] are linearly ordered under set-theoretic inclusion, i.e., they are the ideals [Formula: see text], [Formula: see text], of the chain ring [Formula: see text]. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field [Formula: see text] (i.e., [Formula: see text]), the symbol-pair distance distribution of constacyclic codes over [Formula: see text] verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length [Formula: see text] over [Formula: see text].


2009 ◽  
Vol 3 (4) ◽  
pp. 409-420 ◽  
Author(s):  
Sergio R. López-Permouth ◽  
◽  
Steve Szabo

2011 ◽  
Vol 55 (4) ◽  
pp. 869-879 ◽  
Author(s):  
ShiXin Zhu ◽  
XiaoShan Kai

Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 702
Author(s):  
Aixian Zhang ◽  
Keqin Feng

Normal bases are widely used in applications of Galois fields and Galois rings in areas such as coding, encryption symmetric algorithms (block cipher), signal processing, and so on. In this paper, we study the normal bases for Galois ring extension R / Z p r , where R = GR ( p r , n ) . We present a criterion on the normal basis for R / Z p r and reduce this problem to one of finite field extension R ¯ / Z ¯ p r = F q / F p ( q = p n ) by Theorem 1. We determine all optimal normal bases for Galois ring extension.


2001 ◽  
Vol 7 (1) ◽  
pp. 165-188 ◽  
Author(s):  
Xiang-Dong Hou ◽  
Ka Hin Leung ◽  
Qing Xiang

2007 ◽  
Vol 45 (2) ◽  
pp. 247-258 ◽  
Author(s):  
Jon-Lark Kim ◽  
Yoonjin Lee
Keyword(s):  

1991 ◽  
Vol 12 (6) ◽  
pp. 513-526 ◽  
Author(s):  
Tatsuro Ito ◽  
Akihiro Munemasa ◽  
Mieko Yamada

2021 ◽  
Vol 20 (11) ◽  
Author(s):  
Hai Q. Dinh ◽  
Ha T Le ◽  
Bac T. Nguyen ◽  
Roengchai Tansuchat
Keyword(s):  

2019 ◽  
Vol 55 ◽  
pp. 134-150 ◽  
Author(s):  
Yajing Zhou ◽  
Xiaoshan Kai ◽  
Shixin Zhu ◽  
Jin Li

Sign in / Sign up

Export Citation Format

Share Document