Embedding Linear-Time Temporal Logic into Infinitary Logic: Application to Cut-Elimination for Multi-agent Infinitary Epistemic Linear-Time Temporal Logic

Author(s):  
Norihiro Kamide
2014 ◽  
Vol 25 (1) ◽  
pp. 83-134 ◽  
Author(s):  
NORIHIRO KAMIDE

In this paper, we prove some embedding theorems for LTL (linear-time temporal logic) and its variants:viz. some generalisations, extensions and fragments of LTL. Using these embedding theorems, we give uniform proofs of the completeness, cut-elimination and/or decidability theorems for LTL and its variants. The proposed embedding theorems clarify the relationships between some LTL-variations (for example, LTL, a dynamic topological logic, a fixpoint logic, a spatial logic, Prior's logic, Davies' logic and an NP-complete LTL) and some traditional logics (for example, classical logic, intuitionistic logic and infinitary logic).


2010 ◽  
Vol 51 ◽  
Author(s):  
Jūratė Sakalauskaitė

We consider propositional discrete linear time temporal logic with future and past operators of time. For each formula ϕ of this logic, we present Gentzen-type sequent calculus Gr(ϕ) with a restricted cut rule. We sketch a proof of the soundness and the completeness of the sequent calculi presented. The completeness is proved via construction of a canonical model.


2011 ◽  
Vol 52 ◽  
Author(s):  
Jūratė Sakalauskaitė

We consider combinations of nine propositional multi-modal logics with propositional discrete linear time temporal logic with past time. For these combinations, we present sound and complete Gentzen-type sequent calculi with a restricted cut rule.  


2004 ◽  
Vol XXIV (1) ◽  
pp. 17-24 ◽  
Author(s):  
S. Evangelista ◽  
C. Kaiser ◽  
J. F. Pradat-Peyre ◽  
P. Rousseau

Author(s):  
KIAM TIAN SEOW ◽  
MICHEL PASQUIER

This paper proposes a new logical framework for vehicle route-sequence planning of passenger travel requests. Each request is a fetch-and-send service task associated with two request-locations, namely, a source and a destination. The proposed framework is developed using propositional linear time temporal logic of Manna and Pnueli. The novelty lies in the use of the formal language for both the specification and theorem-proving analysis of precedence constraints among the location visits that are inherent in route sequences. In the framework, legal route sequences—each of which visits every request location once and only once in the precedence order of fetch-and-send associated with every such request—is formalized and justified, forming a basis upon which the link between a basic precedence constraint and the corresponding canonical forbidden-state formula is formally established. Over a given base route plan, a simple procedure to generate a feasible subplan based on a specification of the forbidden-state canonical form is also given. An example demonstrates how temporal logic analysis and the proposed procedure can be applied to select a final (feasible) subplan based on additional precedence constraints.


2003 ◽  
Vol 45 (4) ◽  
Author(s):  
Daniel Große ◽  
Rolf Drechsler

ZusammenfassungDer vorgestellte Ansatz ermöglicht es, für SystemC-Schaltkreisbeschreibungen, die über einer gegebenen Gatterbibliothek definiert sind, Eigenschaften zu beweisen (engl. property checking). Als Spezifikationssprache wird LTL (linear time temporal logic) verwendet. Für den Beweis einer LTL-Eigenschaft kann die Erfüllbarkeit einer Booleschen Funktion betrachtet werden, die aus der Eigenschaft und der Schaltkreisbeschreibung mittels symbolischer Methoden konstruiert wird. Im Gegensatz zu simulationsbasierten Ansätzen kann dabei Vollständigkeit gewährleistet werden. Anhand einer Fallstudie eines skalierbaren Arbiters wird die Effizienz des Beweisverfahrens untersucht.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3052
Author(s):  
Liping Xiong ◽  
Sumei Guo

Specification and verification of coalitional strategic abilities have been an active research area in multi-agent systems, artificial intelligence, and game theory. Recently, many strategic logics, e.g., Strategy Logic (SL) and alternating-time temporal logic (ATL*), have been proposed based on classical temporal logics, e.g., linear-time temporal logic (LTL) and computational tree logic (CTL*), respectively. However, these logics cannot express general ω-regular properties, the need for which are considered compelling from practical applications, especially in industry. To remedy this problem, in this paper, based on linear dynamic logic (LDL), proposed by Moshe Y. Vardi, we propose LDL-based Strategy Logic (LDL-SL). Interpreted on concurrent game structures, LDL-SL extends SL, which contains existential/universal quantification operators about regular expressions. Here we adopt a branching-time version. This logic can express general ω-regular properties and describe more programmed constraints about individual/group strategies. Then we study three types of fragments (i.e., one-goal, ATL-like, star-free) of LDL-SL. Furthermore, we show that prevalent strategic logics based on LTL/CTL*, such as SL/ATL*, are exactly equivalent with those corresponding star-free strategic logics, where only star-free regular expressions are considered. Moreover, results show that reasoning complexity about the model-checking problems for these new logics, including one-goal and ATL-like fragments, is not harder than those of corresponding SL or ATL*.


Author(s):  
Alessio Lomuscio ◽  
Edoardo Pirovano

We present a method for reasoning about fault-tolerance in unbounded robotic swarms. We introduce a novel semantics that accounts for the probabilistic nature of both the swarm and possible malfunctions, as well as the unbounded nature of swarm systems. We define and interpret a variant of probabilistic linear-time temporal logic on the resulting executions, including those arising from faulty behaviour by some of the agents in the swarm. We specify the decision problem of parameterised fault-tolerance, which concerns determining whether a probabilistic specification holds under possibly faulty behaviour. We outline a verification procedure that we implement and use to study a foraging protocol from swarm robotics, and report the experimental results obtained.


Sign in / Sign up

Export Citation Format

Share Document