scholarly journals Groupwise Registration and Atlas Construction of 4th-Order Tensor Fields Using the ℝ +  Riemannian Metric

Author(s):  
Angelos Barmpoutis ◽  
Baba C. Vemuri
2018 ◽  
Vol 37 (3) ◽  
pp. 327-337 ◽  
Author(s):  
T. Oster ◽  
C. Rössl ◽  
H. Theisel

2010 ◽  
Vol 07 (03) ◽  
pp. 485-503 ◽  
Author(s):  
P. ANIELLO ◽  
J. CLEMENTE-GALLARDO ◽  
G. MARMO ◽  
G. F. VOLKERT

The geometrical description of a Hilbert space associated with a quantum system considers a Hermitian tensor to describe the scalar inner product of vectors which are now described by vector fields. The real part of this tensor represents a flat Riemannian metric tensor while the imaginary part represents a symplectic two-form. The immersion of classical manifolds in the complex projective space associated with the Hilbert space allows to pull-back tensor fields related to previous ones, via the immersion map. This makes available, on these selected manifolds of states, methods of usual Riemannian and symplectic geometry. Here, we consider these pulled-back tensor fields when the immersed submanifold contains separable states or entangled states. Geometrical tensors are shown to encode some properties of these states. These results are not unrelated with criteria already available in the literature. We explicitly deal with some of these relations.


1968 ◽  
Vol 32 ◽  
pp. 67-108 ◽  
Author(s):  
Akihiko Morimoto

The purpose of the present paper is to study the prolongations of G-structures on a manifold M to its tangent bundle T(M), G being a Lie subgroup of GL(n,R) with n = dim M. Recently, K. Yano and S. Kobayashi [9] studied the prolongations of tensor fields on M to T(M) and they proposed the following question: Is it possible to associate with each G-structure on M a naturally induced G-structure on T(M), where G′ is a certain subgroup of GL(2n,R)? In this paper we give an answer to this question and we shall show that the prolongations of some special tensor fields by Yano-Kobayashi — for instance, the prolongations of almost complex structures — are derived naturally by our prolongations of the classical G-structures. On the other hand, S. Sasaki [5] studied a prolongation of Riemannian metrics on M to a Riemannian metric on T(M), while the prolongation of a (positive definite) Riemannian metric due to Yano-Kobayashi is always pseudo-Riemannian on T(M) but never Riemannian. We shall clarify the circumstances for this difference and give the reason why the one is positive definite Riemannian and the other is not.


Sign in / Sign up

Export Citation Format

Share Document