Finite Element and Finite Volume Methods

Author(s):  
Torsten Linß
2021 ◽  
Author(s):  
James Kent

<p>GungHo is the mixed finite-element dynamical core under development by the Met Office. A key component of the dynamical core is the transport scheme, which advects density, temperature, moisture, and the winds, throughout the atmosphere. Transport in GungHo is performed by finite-volume methods, to ensure conservation of certain quantaties. There are a range of different finite-volume schemes being considered for transport, including the Runge-Kutta/method-of-lines and COSMIC/Lin-Rood schemes. Additional horizontal/vertical splitting approaches are also under consideration, to improve the stability aspects of the model. Here we discuss these transport options and present results from the GungHo framework, featuring both prescribed velocity advection tests and full dry dynamical core tests. </p>


2010 ◽  
Vol 17 (3) ◽  
pp. 385-410
Author(s):  
Khadija Zine Dine ◽  
Naceur Achtaich ◽  
Mohamed Chagdali

2010 ◽  
Vol 2 (2) ◽  
pp. 237-249 ◽  
Author(s):  
M. A. Uddin ◽  
C. Kato ◽  
N. Oshima ◽  
M. Tanahashi ◽  
T. Miyauchi

Large eddy simulation (LES) in homogeneous isotropic turbulence is performed by using the Finite element method (FEM) and Finite volume vethod (FVM) and the results are compared to show the performance of FEM and FVM numerical solvers. The validation tests are done by using the standard Smagorinsky model (SSM) and dynamic Smagorinsky model (DSM) for subgrid-scale modeling. LES is performed on a uniformly distributed 643 grids and the Reynolds number is low enough that the computational grid is capable of resolving all the turbulence scales. The LES results are compared with those from direct numerical simulation (DNS) which is calculated by a spectral method in order to assess its spectral accuracy. It is shown that the performance of FEM results is better than FVM results in this simulation. It is also shown that DSM performs better than SSM for both FEM and FVM simulations and it gives good agreement with DNS results in terms of both spatial spectra and decay of the turbulence statistics. Visualization of second invariant, Q, in LES data for both FEM and FVM reveals the existence of distinct, coherent, and tube-like vortical structures somewhat similar to those found in instantaneous flow field computed by the DNS. Keywords: Large eddy simulation; Validation; Smagorinsky model; Dynamic Smagorinsky model; Tube-like vortical structure; Homogeneous isotropic turbulence. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.v2i2.2582              J. Sci. Res. 2 (2), 237-249 (2010) 


2005 ◽  
Vol 10 (1-2) ◽  
pp. 233-252 ◽  
Author(s):  
M. Iskandarani ◽  
J.C. Levin ◽  
B.-J. Choi ◽  
D.B. Haidvogel

2007 ◽  
Vol 35 (5) ◽  
pp. 1287-1300 ◽  
Author(s):  
Olivier Ducasse ◽  
Liberis Papageorghiou ◽  
Olivier Eichwald ◽  
Nicolas Spyrou ◽  
Mohammed Yousfi

Sign in / Sign up

Export Citation Format

Share Document