Stochastic Optimization of Electricity Portfolios: Scenario Tree Modeling and Risk Management

Author(s):  
Andreas Eichhorn ◽  
Holger Heitsch ◽  
Werner Römisch

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anton Ochoa Bique ◽  
Leonardo K. K. Maia ◽  
Ignacio E. Grossmann ◽  
Edwin Zondervan

Abstract A strategy for the design of a hydrogen supply chain (HSC) network in Germany incorporating the uncertainty in the hydrogen demand is proposed. Based on univariate sensitivity analysis, uncertainty in hydrogen demand has a very strong impact on the overall system costs. Therefore we consider a scenario tree for a stochastic mixed integer linear programming model that incorporates the uncertainty in the hydrogen demand. The model consists of two configurations, which are analyzed and compared to each other according to production types: water electrolysis versus steam methane reforming. Each configuration has a cost minimization target. The concept of value of stochastic solution (VSS) is used to evaluate the stochastic optimization results and compare them to their deterministic counterpart. The VSS of each configuration shows significant benefits of a stochastic optimization approach for the model presented in this study, corresponding up to 26% of infrastructure investments savings.





2017 ◽  
Vol 143 (12) ◽  
pp. 04017073 ◽  
Author(s):  
Sara Séguin ◽  
Charles Audet ◽  
Pascal Côté


2016 ◽  
Vol 110 ◽  
pp. 49-56 ◽  
Author(s):  
Emilio L. Cano ◽  
Javier M. Moguerza ◽  
Antonio Alonso-Ayuso


2018 ◽  
Author(s):  
A. D. Oliveira ◽  
T. P. Filomena

We briefly discuss the differences among several methods to generate a scenario tree for stochastic optimization. First, the Monte Carlo Random sampling is presented, followed by the Fitting of the First Two Moments sampling, and lastly the Michaud sampling. Literature results are reviewed, taking into account distinctive features of each kind of methodology. According to the literature results, it is fundamental to consider the problem’s unique characteristics to make the more appropriate choice on sampling method.  



2020 ◽  
Vol 66 (8) ◽  
pp. 3329-3339 ◽  
Author(s):  
Zhi Chen ◽  
Melvyn Sim ◽  
Peng Xiong

We present a new distributionally robust optimization model called robust stochastic optimization (RSO), which unifies both scenario-tree-based stochastic linear optimization and distributionally robust optimization in a practicable framework that can be solved using the state-of-the-art commercial optimization solvers. We also develop a new algebraic modeling package, Robust Stochastic Optimization Made Easy (RSOME), to facilitate the implementation of RSO models. The model of uncertainty incorporates both discrete and continuous random variables, typically assumed in scenario-tree-based stochastic linear optimization and distributionally robust optimization, respectively. To address the nonanticipativity of recourse decisions, we introduce the event-wise recourse adaptations, which integrate the scenario-tree adaptation originating from stochastic linear optimization and the affine adaptation popularized in distributionally robust optimization. Our proposed event-wise ambiguity set is rich enough to capture traditional statistic-based ambiguity sets with convex generalized moments, mixture distribution, φ-divergence, Wasserstein (Kantorovich-Rubinstein) metric, and also inspire machine-learning-based ones using techniques such as K-means clustering and classification and regression trees. Several interesting RSO models, including optimizing over the Hurwicz criterion and two-stage problems over Wasserstein ambiguity sets, are provided. This paper was accepted by David Simchi-Levi, optimization.



Sign in / Sign up

Export Citation Format

Share Document