electricity production
Recently Published Documents


TOTAL DOCUMENTS

2445
(FIVE YEARS 1066)

H-INDEX

68
(FIVE YEARS 13)

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 556
Author(s):  
Hang Thi-Thuy Le ◽  
Eleonora Riva Sanseverino ◽  
Dinh-Quang Nguyen ◽  
Maria Luisa Di Silvestre ◽  
Salvatore Favuzza ◽  
...  

Vietnam became the world’s third largest market for solar photovoltaic energy in 2020. Especially after the Vietnamese government issued feed-in tariffs for grid-connected solar photovoltaic systems, the installed capacity of solar photovoltaic applications exploded in 2019. From studies carried out in the relevant literature, it can be said that support policies are highly important for the initial development of the renewable energy industry in most countries. This is especially true in emerging countries such as Vietnam. This paper reviews the feed-in tariffs issued and deployed in different regions of Vietnam for grid-connected solar photovoltaic applications. Moreover, the paper takes a closer look at the costs of electricity production from these systems in relation to the feed-in tariffs issued in Vietnam. The results show that the gap between the levelized cost of electricity and the feed-in tariff for solar photovoltaic electricity is relatively high, particularly in regions with a lower irradiation potential.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 496
Author(s):  
Sameh Monna ◽  
Ramez Abdallah ◽  
Adel Juaidi ◽  
Aiman Albatayneh ◽  
Antonio Jesús Zapata-Sierra ◽  
...  

Countries with limited natural resources and high energy prices, such as Jordan, face significant challenges concerning energy consumption and energy efficiency, particularly in the context of climate change. Residential buildings are the most energy-consuming sector in Jordan. Photovoltaic (PV) systems on the rooftops of residential buildings can solve the problem of increasing electricity demands and address the need for more sustainable energy systems. This study calculated the potential electricity production from PV systems installed on the available rooftops of residential buildings and compared this production with current and future electricity consumption for residential households. A simulation tool using PV*SOL 2021 was used to estimate electricity production and a comparative method was used to compare electricity production and consumption. The results indicated that electricity production from PV systems installed on single houses and villas can cover, depending on the tilt angle and location of the properties, three to eight times their estimated future and current electricity use. PV installation on apartment buildings can cover 0.65 to 1.3 times their future and current electricity use. The surplus electricity produced can be used to mitigate urban energy demands and achieve energy sustainability.


2022 ◽  
Vol 12 (2) ◽  
pp. 673
Author(s):  
Anatolijs Borodinecs ◽  
Deniss Zajecs ◽  
Kristina Lebedeva ◽  
Raimonds Bogdanovics

Temporary structures are being extensively used by emergency services (rescue, disaster relief, military response units), and other end-users requiring temporary mobile off-grid energy solutions for different purposes (event organization, vacation homes, summer camps, etc.). Yet energy systems for these purposes largely remain fossil-based (such as diesel generators). Although such energy systems are inexpensive, they are carbon intensive and inefficient. This study presents a methodology of simulating temporary shelter with access to an energy supply system through a mobile energy unit with renewable (PV) power supply systems to ensure on-site electricity production, as well as heating/cooling and ventilation. Digital modeling simulations have been performed for a simulated temporary shelter in different climate conditions incorporating different combinations of electricity generation systems with a fossil fuel-based solution and a PV system, using TRNSYS software. Study results show that the operation of a mobile energy generation unit can operate HVAC systems and generate electricity for temporary shelter occupants in off-grid solutions. The modeling results show that the use of a mobile energy generation unit can significantly reduce diesel consumption in temporary shelters from 54% annually (in Riga, Latvia) to 96 % annually (in Jerusalem, Israel). Furthermore, the output of PV-generated electricity is higher (in most cases) than the consumed electricity amount.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 210
Author(s):  
Dong Liu ◽  
Chunling Li ◽  
Congyue Zhao ◽  
Er Nie ◽  
Jianqiao Wang ◽  
...  

TiO2 develops a higher efficiency when doping Bi into it by increasing the visible light absorption and inhibiting the recombination of photogenerated charges. Herein, a highly efficient Bi doped TiO2 photoanode was fabricated via a one-step modified sol-gel method and a screen-printing technique for the anode of photocatalytic fuel cell (PFC). A maximum degradation rate of 91.2% of Rhodamine B (RhB) and of 89% after being repeated 5 times with only 2% lost reflected an enhanced PFC performance and demonstrated an excellent stability under visible-light irradiation. The excellent degradation performance was attributed to the enhanced visible-light response and decreased electron-hole recombination rate. Meanwhile, an excellent linear correlation was observed between the efficient photocurrent of PFC and the chemical oxygen demand of solution when RhB is sufficient.


Author(s):  
Arif Nur Afandi ◽  
Aji P. Wibawa ◽  
Syaad Patmantara ◽  
Goro Fujita ◽  
Slamet Hani ◽  
...  

The electricity system is generally rapidly developing for covering various power demands with requiring a reliable and safe supply where the substructures are expanding further in generation systems, transmission systems, and distribution systems. However, the system must be run economically to access energy at a cost-effective level related to existing energy enterprises and energy consumption in the load which is represented periodically in the total costs of operations for all operating units. As a basis for its determination, the transmission of economic power within the technical limits applicable is taken into consideration. Environmental factors, on the other hand, are also an impediment to technical limitations. As a result, the operation's economic measure is expressed in the process of providing and selling energy to customers. These works use the Artificial Bees Colony algorithm to determine the scheduling of generating units using the basic principle of optimization to describe its relationship as an economic function. The IEEE-30 bus system is used as a basic model for system development. The analysis' findings show that the weighting factor scheme has an impact on the minimum total cost and that the combination of the electricity distribution process and environmental factors has implications for the operational financial condition and electricity production. The power output, in particular, is proportional to the cost of each generating unit.


2022 ◽  
Author(s):  
Rashi Chandel ◽  
deepak Punetha ◽  
Divya Dhawan ◽  
Neena Gupta

Abstract The perovskite absorber layer are considered highly efficient solar cell for low-cost electricity production. In this research work, an EA-substituted tin based perovskite solar cell with different hole transport material (PEDOT: PSS, Cu2O, CuI, CZTSe) have been investigated using device simulation software. The effects of absorber thickness, defect density, operating temperature, J-V characteristics, and Quantum efficiency have been considered to enhance the performance of solar cell. To confirm the feasibility and validate the study, all the simulation results were compared with reported experiment data. According to the experimental work based on (FA0.9EA0.1)0.98EDA0.01SnI3 absorber layer, maximum of 13% efficiency is achieved with PEDOT: PSS as the HTM. Whereas we have further optimized performance parameters and found the superior response (Voc=0.8851 V, Jsc=27.24 mA/cm2, FF=77.91%, and PCE=18.78%) while opted Cu2O as the hole transport material. This device structure FTO/Cu2O/(FA0.9EA0.1)0.98EDA0.01SnI3/IDL/PCBM/C60/Au provides the more efficient, reliable solution for replacing the lead-based perovskite solar cell. This study will aid researcher in a reasonable choice of materials and to predict the behavior of high performance solar cell before undergoing the fabrication process.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 312
Author(s):  
Abdulaziz Alhammad ◽  
Qian (Chayn) Sun ◽  
Yaguang Tao

Many countries have set a goal for a carbon neutral future, and the adoption of solar energy as an alternative energy source to fossil fuel is one of the major measures planned. Yet not all locations are equally suitable for solar energy generation. This is due to uneven solar radiation distribution as well as various environmental factors. A number of studies in the literature have used multicriteria decision analysis (MCDA) to determine the most suitable places to build solar power plants. To the best of our knowledge, no study has addressed the subject of optimal solar plant site identification for the Al-Qassim region, although developing renewable energy in Saudi Arabia has been put on the agenda. This paper developed a spatial MCDA framework catering to the characteristics of the Al-Qassim region. The framework adopts several tools used in Geographic Information Systems (GIS), such as Random Forest (RF) raster classification and model builder. The framework aims to ascertain the ideal sites for solar power plants in the Al-Qassim region in terms of the amount of potential photovoltaic electricity production (PVOUT) that could be produced from solar energy. For that, a combination of GIS and Analytical Hierarchy Process (AHP) techniques were employed to determine five sub-criteria weights (Slope, Global Horizontal Irradiance (GHI), proximity to roads, proximity to residential areas, proximity to powerlines) before performing spatial MCDA. The result showed that ‘the most suitable’ and ‘suitable’ areas for the establishment of solar plants are in the south and southwest of the region, representing about 17.53% of the study area. The ‘unsuitable’ areas account for about 10.17% of the total study area, which is mainly concentrated in the northern part. The rest of the region is further classified into ‘moderate’ and ‘restricted’ areas, which account for 46.42% and 25.88%, respectively. The most suitable area for potential solar energy, yields approximately 1905 Kwh/Kwp in terms of PVOUT. The proposed framework also has the potential to be applied to other regions nationally and internationally. This work contributes a reproducible GIS workflow for a low-cost but accurate adoption of a solar energy plan to achieve sustainable development goals.


2022 ◽  
Vol 961 (1) ◽  
pp. 012017
Author(s):  
Zaman A. Abdulwahab ◽  
Sami I. Jafar ◽  
Sami A. Ajeel

Abstract The steal turbine blades, operating in steam electricity production plants are subjected to periodic circular stresses that cause fatigue failure with the passage of time. The chemical composition so steam turbine blades show that is steel 52 it has a wide range of applications, mostly in welded construction, All kinds of welded construction, wind turbines, load-lifting equipment, platform components, cranes, bridge components, and structures. This research aims to study the microstructure of these turbine blades before and after the occurrence of fatigue, and for the purpose of improvement the fatigue resistance, the blades were treated with a laser and the amount of improvement in fatigue resistance was calculated and also the change in the microstructure after laser treatment was studied. The remelting process applied with this parameter Pulse energy = 8 joules, Pulse width = 4.5 Ms., Pulse frequency = 12 Hz, Laser Average Power = 96 W, Laser peak power = 1.78 KW. The results show, after remelting process the microstructure of the specimen is smooth and increase the cyclic of fatigue comparison with specimen without leaser remelting process. So, the fatigue resistance is increased.


Fuel ◽  
2022 ◽  
Vol 308 ◽  
pp. 122049
Author(s):  
Seyed Mojtaba Alirahmi ◽  
Ehsanolah Assareh ◽  
Nader Nadaki Pourghassab ◽  
Mostafa Delpisheh ◽  
Linda Barelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document