hydrogen supply
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 145)

H-INDEX

31
(FIVE YEARS 7)

2022 ◽  
Vol 429 ◽  
pp. 132286
Author(s):  
Weiqin Lu ◽  
Rongjun Zhang ◽  
Sam Toan ◽  
Ran Xu ◽  
Feiyi Zhou ◽  
...  

Author(s):  
Emma Southall ◽  
Liliana Lukashuk

Reliable storage and transportation of hydrogen at scale is a challenge which needs to be tackled to allow a robust and on-demand hydrogen supply when moving towards a global low carbon hydrogen economy with the aim of meeting net-zero climate goals. Numerous technologies and options are currently being explored for effective hydrogen storage and transportation to facilitate a smooth transition to the hydrogen economy. This paper provides an overview of different hydrogen storage and transportation technologies, focusing in more detail on liquid organic hydrogen carriers (LOHCs), its advantages and disadvantages, and future considerations for the optimisation of the LOHC technology.


2022 ◽  
Vol 334 ◽  
pp. 02003
Author(s):  
Federico Parolin ◽  
Paolo Colbertaldo ◽  
Stefano Campanari

Hydrogen is recognized as a key element of future low-carbon energy systems. For proper integration, an adequate delivery infrastructure will be required, to be deployed in parallel to the electric grid and the gas network. This work adopts an optimization model to support the design of a future hydrogen delivery infrastructure, considering production, storage, and transport up to demand points. The model includes two production technologies, i.e., steam reforming with carbon capture and PV-fed electrolysis systems, and three transport modalities, i.e., pipelines, compressed hydrogen trucks, and liquid hydrogen trucks. This study compares a multi-modality formulation, in which the different transport technologies are simultaneously employed and their selection is optimized, with a mono-modality formulation, in which a single transport technology is considered. The assessment looks at the regional case study of Lombardy in Italy, considering a long-term scenario in which an extensive hydrogen supply chain is developed to supply hydrogen for clean mobility. Results show that the multi-modality infrastructure provides significant cost benefits, yielding an average cost of hydrogen that is up to 11% lower than a mono-modality configuration.


Author(s):  
Emma Southall ◽  
Liliana Lukashuk

The deployment of hydrogen as an infrastructure fuel and an energy vector across a range of industries is expected to aid with meeting decarbonisation goals and achieving net zero emissions. For the transition towards a low carbon hydrogen economy, not only the production of hydrogen needs to be addressed, but also its transportation and storage. Liquid organic hydrogen carriers (LOHCs) are an attractive solution for the storage and transportation of hydrogen to allow a reliable and on-demand hydrogen supply, enabling industrial decarbonisation. This work describes the potential deployment and integration of LOHCs within different industries. These include: the transportation sector; steel and cement industries; the use of stored hydrogen to produce fuels and chemicals from flue gases, and a system integration of fuel cells and LOHCs for energy storage.


2022 ◽  
Vol 334 ◽  
pp. 06008
Author(s):  
Roberta Caponi ◽  
Andrea Monforti Ferrario ◽  
Enrico Bocci ◽  
Kristina Fløche Juelsgaard

Worldwide about 550 hydrogen refueling stations (HRS) were in operation in 2021, of which 38%. were in Europe. With their number expected to grow even further, the collection and investigation of real-world station operative data are fundamental to tracking their activity in terms of safety issues, performances, costs, maintenance, reliability, and energy use. This paper shows and analyses the parameters that characterize the refueling of 350 bar fuel cell buses in four HRS within the 3Emotion project. The HRS are characterized by different refueling capacities, hydrogen supply schemes, storage volumes and pressures, and operational strategies. From data logs provided by the operators, a dataset of three years of operation has been created. In particular total hydrogen quantity, the fill amount dispensed to each bus, the refueling duration, the average mass flow rate, the number of refueling events and the daily number of refills, the daily profile, the utilization factor, and the availability are investigated. The results show similar hydrogen amount per fill distribution, but quite different refueling times among the stations. The average daily mass per bus is around 12.95 kg, the most frequent value 15 kg, the standard deviation 7.46. About 50% of the total amount of hydrogen is dispensed overnight and the refueling events per bus are typically every 24 hours. Finally, the station utilization is below 30% for all sites.


2021 ◽  
Vol 12 ◽  
pp. 70-82
Author(s):  
Ba Nam Pham ◽  
Thi Ngoan Nghiem ◽  
Minh Phuong Dao ◽  
Thi Lan Oanh Nguyen ◽  
Hien Trang Ta ◽  
...  

By 2050, blue hydrogen (produced by SMR method using CCS technology to capture CO2) will make up about 18% of hydrogen supply, whilst green hydrogen from solar power will account for 16%, from onshore wind power 16% and offshore wind power 9%. Global hydrogen demand is forecasted to increase to about 150 million tons by 2040 [1]. The article analyses the objective factors (i.e. size and structure of the economy, technological and social barriers) and policies of countries that affect hydrogen market development.


2021 ◽  
Vol 12 ◽  
pp. 15-22
Author(s):  
Thi Lan Oanh Nguyen

Hydrogen is forecasted as an energy solution for the future thanks to its advantages of cleanliness, abundance and high energy conversion efficiency. The paper briefly introduces the hydrogen supply chain, hydrogen production technologies prevailing or expected in the future, as well as challenges that need to be addressed for a successful transition to a hydrogen-based economy.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7613
Author(s):  
Sanghyoun Park ◽  
Mujahid Naseem ◽  
Sangyong Lee

The development of alternate clean energy resources is among the most pressing issues in the energy sector in order to preserve the global natural environment. One of the ideal candidates is the utilization of hydrogen as a primary fuel in lieu of fossil fuels. It can be safely stored in liquid organic hydrogen carrier (LOHC) materials and recovered on demand. A uniform supply of hydrogen is essential for power production systems for their smooth operation. This study was conducted to determine the operating conditions of the dehydrogenation of perhydro-dibenzyltoluene (H18-DBT) to ensure that hydrogen supply in a continuous flow reactor remains stable over a wide range of temperatures. The hydrogen flow rate from the dehydrogenation reaction was measured and correlated with the degree of dehydrogenation (DoD) evaluated from the refractive index of reactant liquid samples at various temperatures, WHSV and the initial reactant concentrations. Moreover, a kinetic model is presented holding validity up to a WHSV of 67 h−1. The results acquired present a range for an order of reaction from 2.3 to 2.4 with the required activation energy of 171 kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document