Low-Complexity and Sampling-Aided Multi-view Video Coding at Low Bitrate

Author(s):  
Xin Zhao ◽  
Xinfeng Zhang ◽  
Li Zhang ◽  
Siwei Ma ◽  
Wen Gao
Keyword(s):  
2021 ◽  
Vol 30 ◽  
pp. 2378-2393
Author(s):  
Meng Wang ◽  
Shiqi Wang ◽  
Junru Li ◽  
Li Zhang ◽  
Yue Wang ◽  
...  

2018 ◽  
Vol 30 (3) ◽  
pp. 1363-1394 ◽  
Author(s):  
Raíza S. Oliveira ◽  
Renato J. Cintra ◽  
Fábio M. Bayer ◽  
Thiago L. T. da Silveira ◽  
Arjuna Madanayake ◽  
...  

Algorithms ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 130 ◽  
Author(s):  
Dinh Trieu Duong ◽  
Huy Phi Cong ◽  
Xiem Hoang Van

Distributed video coding (DVC) is an attractive and promising solution for low complexity constrained video applications, such as wireless sensor networks or wireless surveillance systems. In DVC, visual quality consistency is one of the most important issues to evaluate the performance of a DVC codec. However, it is the fact that the quality of the decoded frames that is achieved in most recent DVC codecs is not consistent and it is varied with high quality fluctuation. In this paper, we propose a novel DVC solution named Joint exploration model based DVC (JEM-DVC) to solve the problem, which can provide not only higher performance as compared to the traditional DVC solutions, but also an effective scheme for the quality consistency control. We first employ several advanced techniques that are provided in the Joint exploration model (JEM) of the future video coding standard (FVC) in the proposed JEM-DVC solution to effectively improve the performance of JEM-DVC codec. Subsequently, for consistent quality control, we propose two novel methods, named key frame quantization (KF-Q) and Wyner-Zip frame quantization (WZF-Q), which determine the optimal values of the quantization parameter (QP) and quantization matrix (QM) applied for the key and WZ frame coding, respectively. The optimal values of QP and QM are adaptively controlled and updated for every key and WZ frames to guarantee the consistent video quality for the proposed codec unlike the conventional approaches. Our proposed JEM-DVC is the first DVC codec in literature that employs the JEM coding technique, and then all of the results that are presented in this paper are new. The experimental results show that the proposed JEM-DVC significantly outperforms the relevant DVC benchmarks, notably the DISCOVER DVC and the recent H.265/HEVC based DVC, in terms of both Peak signal-to-noise ratio (PSNR) performance and consistent visual quality.


Sign in / Sign up

Export Citation Format

Share Document