promising solution
Recently Published Documents


TOTAL DOCUMENTS

966
(FIVE YEARS 573)

H-INDEX

26
(FIVE YEARS 10)

2022 ◽  
Vol 18 (2) ◽  
pp. 1-23
Author(s):  
Junyang Shi ◽  
Xingjian Chen ◽  
Mo Sha

IEEE 802.15.4-based wireless sensor-actuator networks have been widely adopted by process industries in recent years because of their significant role in improving industrial efficiency and reducing operating costs. Today, industrial wireless sensor-actuator networks are becoming tremendously larger and more complex than before. However, a large, complex mesh network is hard to manage and inelastic to change once the network is deployed. In addition, flooding-based time synchronization and information dissemination introduce significant communication overhead to the network. More importantly, the deliveries of urgent and critical information such as emergency alarms suffer long delays, because those messages must go through the hop-by-hop transport. A promising solution to overcome those limitations is to enable the direct messaging from a long-range radio to an IEEE 802.15.4 radio. Then messages can be delivered to all field devices in a single-hop fashion. This article presents our study on enabling the cross-technology communication from LoRa to ZigBee using the energy emission of the LoRa radio as the carrier to deliver information. Experimental results show that our cross-technology communication approach provides reliable communication from LoRa to ZigBee with the throughput of up to 576.80 bps and the bit error rate of up to 5.23% in the 2.4 GHz band.


2022 ◽  
Vol 18 (2) ◽  
pp. 1-24
Author(s):  
Saman Froehlich ◽  
Saeideh Shirinzadeh ◽  
Rolf Drechsler

Resistive Random Access Memory (ReRAM) is an emerging non-volatile memory technology. Besides its low power consumption and its high scalability, its inherent computation capabilities make ReRAM especially interesting for future computer architectures. Merging computations into the memory is a promising solution for overcoming the memory bottleneck. To perform computations in ReRAM, efficient synthesis strategies for Boolean functions have to be developed. In this article, we give a thorough presentation of how to employ parallel computing capabilities of ReRAM for the synthesis of functions given state-of-the-art graph-based representations AIGs or BDDs. Additionally, we introduce a new graph-based representation called m-And-Inverter Graph (m-AIGs), which allows us to fully exploit the computing capabilities of ReRAM. In the simulations, we show that our proposed approaches outperform state-of-the art synthesis strategies, and we show the superiority of m-AIGs over the standard AIG representation for ReRAM-based synthesis.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-18
Author(s):  
Anna Lito Michala ◽  
Ioannis Vourganas ◽  
Andrea Coraddu

IoT and the Cloud are among the most disruptive changes in the way we use data today. These changes have not significantly influenced practices in condition monitoring for shipping. This is partly due to the cost of continuous data transmission. Several vessels are already equipped with a network of sensors. However, continuous monitoring is often not utilised and onshore visibility is obscured. Edge computing is a promising solution but there is a challenge sustaining the required accuracy for predictive maintenance. We investigate the use of IoT systems and Edge computing, evaluating the impact of the proposed solution on the decision making process. Data from a sensor and the NASA-IMS open repository were used to show the effectiveness of the proposed system and to evaluate it in a realistic maritime application. The results demonstrate our real-time dynamic intelligent reduction of transmitted data volume by without sacrificing specificity or sensitivity in decision making. The output of the Decision Support System fully corresponds to the monitored system's actual operating condition and the output when the raw data are used instead. The results demonstrate that the proposed more efficient approach is just as effective for the decision making process.


Author(s):  
Hong Son Vu ◽  
Kien Truong ◽  
Minh Thuy Le

<p>Massive multiple-input multiple-output (MIMO) systems are considered a promising solution to minimize multiuser interference (MUI) based on simple precoding techniques with a massive antenna array at a base station (BS). This paper presents a novel approach of beam division multiple access (BDMA) which BS transmit signals to multiusers at the same time via different beams based on hybrid beamforming and user-beam schedule. With the selection of users whose steering vectors are orthogonal to each other, interference between users is significantly improved. While, the efficiency spectrum of proposed scheme reaches to the performance of fully digital solutions, the multiuser interference is considerably reduced.</p>


2022 ◽  
Vol 18 (1) ◽  
pp. 1-27
Author(s):  
Javad Bagherzadeh ◽  
Aporva Amarnath ◽  
Jielun Tan ◽  
Subhankar Pal ◽  
Ronald G. Dreslinski

Monolithic 3D technology is emerging as a promising solution that can bring massive opportunities, but the gains can be hindered due to the reliability issues exaggerated by high temperature. Conventional reliability solutions focus on one specific feature and assume that the other required features would be provided by different solutions. Hence, this assumption has resulted in solutions that are proposed in isolation of each other and fail to consider the overall compatibility and the implied overheads of multiple isolated solutions for one system. This article proposes a holistic reliability management engine, R2D3, for post-Moore’s M3D parallel systems that have low yield and high failure rate. The proposed engine, comprising a controller, reconfigurable crossbars, and detection circuitry, provides concurrent single-replay detection and diagnosis, fault-mitigating repair, and aging-aware lifetime management at runtime. This holistic view enables us to create a solution that is highly effective while achieving a low overhead. Our solution achieves 96% coverage of defect; reduces V th degradation by 53%, leading to a 78% performance improvement on average over 8 years for an eight-core system; and ultimately yields a 2.16× longer mean-time-to-failure (MTTF) while incurring an overhead of 7.4% in area, 6.5% in power, and an 8.2% decrease in frequency.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-23
Author(s):  
Jianhui Han ◽  
Xiang Fei ◽  
Zhaolin Li ◽  
Youhui Zhang

Memristor-based processing-in-memory architecture is a promising solution to the memory bottleneck in the neural network ( NN ) processing. A major challenge for the programmability of such architectures is the automatic compilation of high-level NN workloads, from various operators to the memristor-based hardware that may provide programming interfaces with different granularities. This article proposes a source-to-source compilation framework for such memristor-based NN accelerators, which can conduct automatic detection and mapping of multiple NN operators based on the flexible and rich representation capability of the polyhedral model. In contrast to previous studies, it implements support for pipeline generation to exploit the parallelism in the NN loads to leverage hardware resources for higher efficiency. The evaluation based on synthetic kernels and NN benchmarks demonstrates that the proposed framework can reliably detect and map the target operators. Case studies on typical memristor-based architectures also show its generality over various architectural designs. The evaluation further demonstrates that compared with existing polyhedral-based compilation frameworks that do not support the pipelined execution, the performance can upgrade by an order of magnitude with the pipelined execution, which emphasizes the necessity of our improvement.


Author(s):  
Ibtissem Wali ◽  
◽  
Amina Kessentini ◽  
Mohamed Ali Ben Ayed ◽  
Nouri Masmoudi ◽  
...  

The programmable processors newest technologies, as for example the multicore Digital Signal Processors (DSP), offer a promising solution for overcoming the complexity of the real time video encoding application. In this paper, the SHVC video encoder was effectively implemented just on a single core among the eight cores of TMS320C6678 DSP for a Common Intermediate Format (CIF)input video sequence resolution(352x288). Performance optimization of the SHVC encoder had reached up 41% compared to its reference software enabling a real-time implementation of the SHVC encoder for CIF input videos sequence resolution. The proposed SHVC implementation was carried out on different quantization parameters (QP). Several experimental tests had proved our performance achievement for real-time encoding on TMS320C6678.


2022 ◽  
Vol 9 ◽  
Author(s):  
Chung Hong Tan ◽  
Saifuddin Nomanbhay ◽  
Abd Halim Shamsuddin ◽  
Young-Kwon Park ◽  
H. Hernández-Cocoletzi ◽  
...  

The utilization of fossil fuel has increased atmospheric carbon dioxide (CO2) concentrations drastically over the last few decades. This leads to global warming and climate change, increasing the occurrence of more severe weather around the world. One promising solution to reduce anthropogenic CO2 emissions is methanation. Many researchers and industries are interested in CO2 methanation as a power-to-gas technology and carbon capture and storage (CCS) system. Producing an energy carrier, methane (CH4), via CO2 methanation and water electrolysis is an exceptionally effective method of capturing energy generated by renewables. To enhance methanation efficiency, numerous researches have been conducted to develop catalysts with high activity, CH4 selectivity, and stability against the reaction heat. Therefore, in this mini-review, the characteristics and recent advances of metal-based catalysts in methanation of CO2 is discussed.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 584
Author(s):  
Chiara Magni ◽  
Sylvain Quoilin ◽  
Alessia Arteconi

Flexibility is crucial to enable the penetration of high shares of renewables in the power system while ensuring the security and affordability of the electricity dispatch. In this regard, heat–electricity sector coupling technologies are considered a promising solution for the integration of flexible devices such as thermal storage units and heat pumps. The deployment of these devices would also enable the decarbonization of the heating sector, responsible for around half of the energy consumption in the EU, of which 75% is currently supplied by fossil fuels. This paper investigates in which measure the diffusion of district heating (DH) coupled with thermal energy storage (TES) units can contribute to the overall system flexibility and to the provision of operating reserves for energy systems with high renewable penetration. The deployment of two different DH supply technologies, namely combined heat and power units (CHP) and large-scale heat pumps (P2HT), is modeled and compared in terms of performance. The case study analyzed is the future Italian energy system, which is simulated through the unit commitment and optimal dispatch model Dispa-SET. Results show that DH coupled with heat pumps and CHP units could enable both costs and emissions related to the heat–electricity sector to be reduced by up to 50%. DH systems also proved to be a promising solution to grant the flexibility and resilience of power systems with high shares of renewables by significantly reducing the curtailment of renewables and cost-optimally providing up to 15% of the total upward reserve requirements.


Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Baptiste Languille ◽  
Valérie Gros ◽  
Bonnaire Nicolas ◽  
Cécile Honoré ◽  
Anne Kaufmann ◽  
...  

Portable sensors have emerged as a promising solution for personal exposure (PE) measurement. For the first time in Île-de-France, PE to black carbon (BC), particulate matter (PM), and nitrogen dioxide (NO2) was quantified based on three field campaigns involving 37 volunteers from the general public wearing the sensors all day long for a week. This successful deployment demonstrated its ability to quantify PE on a large scale, in various environments (from dense urban to suburban, indoor and outdoor) and in all seasons. The impact of the visited environments was investigated. The proximity to road traffic (for BC and NO2), as well as cooking activities and tobacco smoke (for PM), made significant contributions to total exposure (up to 34%, 26%, and 44%, respectively), even though the time spent in these environments was short. Finally, even if ambient outdoor levels played a role in PE, the prominent impact of the different environments suggests that traditional ambient monitoring stations is not a proper surrogate for PE quantification.


Sign in / Sign up

Export Citation Format

Share Document