Linear Array Geometry Synthesis with Minimum Side Lobe Level and Null Control Using Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search

Author(s):  
Pradipta Ghosh ◽  
Hamim Zafar
2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Lei Liang ◽  
Jie Sun ◽  
Hailin Li ◽  
Jialing Liu ◽  
Yachao Jiang ◽  
...  

An efficient pattern synthesis approach is proposed for the synthesis of a time-modulated sparse linear array (TMSLA) in this paper. Due to the introduction of time modulation, the low/ultralow side lobe level can be obtained with a low amplitude dynamic range ratio. Besides, it helps reduce the difficulty of antenna feeding system effectively. Based on particle swarm optimization (PSO) and convex (CVX) optimization, this paper proposes a hybrid optimization method to suppress the grating lobes of the sparse arrays, peak side lobe level (PSLL), and peak sideband level (PSBL). Firstly, the paper utilizes the CVX optimization as a local optimization algorithm to optimize the elements’ switch-on duration time, which reduces the side lobe of the array. Secondly, with the PSBL as the objective function, the paper adopts the PSO as a global optimization algorithm to optimize the elements’ positions and switch-on time instant, which helps reduce the loss of sideband power caused by time modulation. With respect to the time modulation model, variable aperture sizes (VAS) and more flexible pulse-shifting (PS) schemes are used in this paper. Owing to the introduction of time modulation and CVX optimization, the proposed method is much more feasible and efficient than conventional approaches. Furthermore, it has better array pattern synthesis performance. Numerical examples of the TMSLA and comparisons with the reference are presented to demonstrate the effectiveness of the proposed method.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Sarayoot Todnatee ◽  
Chuwong Phongcharoenpanich

This research has proposed the iterative genetic algorithm (GA) optimization scheme to synthesize the radiation pattern of an aperiodic (nonuniform) linear array antenna. The aim of the iterative optimization is to achieve a radiation pattern with a side lobe level (SLL) of ≤−20 dB. In the optimization, the proposed scheme iteratively optimizes the array range (spacing) and the number of array elements, whereby the array element with the lowest absolute complex weight coefficient is first removed and then the second lowest and so on. The removal (the element reduction) is terminated once the SLL is greater than −20 dB (>−20 dB) and the elemental increment mechanism is triggered. The results indicate that the proposed iterative GA optimization scheme is applicable to the nonuniform linear array antenna and also is capable of synthesizing the radiation pattern with SLL ≤ −20 dB.


Sign in / Sign up

Export Citation Format

Share Document