On Similarity Search in Audio Signals Using Adaptive Sparse Approximations

Author(s):  
Bob L. Sturm ◽  
Laurent Daudet
Author(s):  
L. S. Chumbley ◽  
M. Meyer ◽  
K. Fredrickson ◽  
F.C. Laabs

The development of a scanning electron microscope (SEM) suitable for instructional purposes has created a large number of outreach opportunities for the Materials Science and Engineering (MSE) Department at Iowa State University. Several collaborative efforts are presently underway with local schools and the Department of Curriculum and Instruction (C&I) at ISU to bring SEM technology into the classroom in a near live-time, interactive manner. The SEM laboratory is shown in Figure 1.Interactions between the laboratory and the classroom use inexpensive digital cameras and shareware called CU-SeeMe, Figure 2. Developed by Cornell University and available over the internet, CUSeeMe provides inexpensive video conferencing capabilities. The software allows video and audio signals from Quikcam™ cameras to be sent and received between computers. A reflector site has been established in the MSE department that allows eight different computers to be interconnected simultaneously. This arrangement allows us to demonstrate SEM principles in the classroom. An Apple Macintosh has been configured to allow the SEM image to be seen using CU-SeeMe.


2009 ◽  
Vol 20 (10) ◽  
pp. 2867-2884 ◽  
Author(s):  
Feng WU ◽  
Yan ZHONG ◽  
Quan-Yuan WU ◽  
Yan JIA ◽  
Shu-Qiang YANG

2009 ◽  
Vol 28 (10) ◽  
pp. 2721-2721 ◽  
Author(s):  
Ai-guo LI ◽  
Hua ZHAO

2020 ◽  
Vol 16 (4) ◽  
pp. 473-485
Author(s):  
David Mary Rajathei ◽  
Subbiah Parthasarathy ◽  
Samuel Selvaraj

Background: Coronary heart disease generally occurs due to cholesterol accumulation in the walls of the heart arteries. Statins are the most widely used drugs which work by inhibiting the active site of 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGCR) enzyme that is responsible for cholesterol synthesis. A series of atorvastatin analogs with HMGCR inhibition activity have been synthesized experimentally which would be expensive and time-consuming. Methods: In the present study, we employed both the QSAR model and chemical similarity search for identifying novel HMGCR inhibitors for heart-related diseases. To implement this, a 2D QSAR model was developed by correlating the structural properties to their biological activity of a series of atorvastatin analogs reported as HMGCR inhibitors. Then, the chemical similarity search of atorvastatin analogs was performed by using PubChem database search. Results and Discussion: The three-descriptor model of charge (GATS1p), connectivity (SCH-7) and distance (VE1_D) of the molecules is obtained for HMGCR inhibition with the statistical values of R2= 0.67, RMSEtr= 0.33, R2 ext= 0.64 and CCCext= 0.76. The 109 novel compounds were obtained by chemical similarity search and the inhibition activities of the compounds were predicted using QSAR model, which were close in the range of experimentally observed threshold. Conclusion: The present study suggests that the QSAR model and chemical similarity search could be used in combination for identification of novel compounds with activity by in silico with less computation and effort.


Author(s):  
Bharat Mirchandani ◽  
Pascal Perrier ◽  
Brigitte Grosgogeat ◽  
Christophe Jeannin

Abstract Objectives The mechanical interactions between tongue and palate are crucial for speech production and swallowing. In this study, we present examples of pressure signals that can be recorded with our PRESLA system (PRESLA holds for the French expression “PRESsion de la LAngue” [Pressure from the tongue]) to assess these motor functions, and we illustrate which issues can be tackled with such a system. Materials and Methods A single French-speaking edentulous subject, old wearer of a complete denture, with no speech production and swallowing disorders, was recorded during the production of nonsense words including French alveolar fricatives, and during dry and water swallowing. The PRESLA system used strain-gauge transducers that were inserted into holes drilled in the palatal surface of a duplicate of the prosthesis at six locations that were relevant for speech production and swallowing. Pressure signals were postsynchronized with the motor tasks based on audio signals. Results Patterns of temporal variations of the pressure exerted by the tongue on the palate are shown for the two studied motor tasks. It is shown for our single subject that patterns for fricative /s/ are essentially bell shaped, whereas pressure signals observed for water swallow begin with a maximum followed by a slow decrease during the rest of the positive pressure phase. Pressure magnitude is almost 20 times larger for water swallow than for /s/ production. Conclusions This study illustrates the usefulness of our PRESLA system for studying speech production and swallowing motor control under normal and pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document