Emotional Face Perception in Healthy Subjects and Parkinson’s Disease: An Effective Connectivity Study

Author(s):  
Elvis Lira da Silva ◽  
Gabriela Castellano ◽  
João Ricardo Sato ◽  
Ellison Fernando Cardoso ◽  
Edson Amaro
2021 ◽  
Vol 12 ◽  
Author(s):  
Nicole Göbel ◽  
Jens Carsten Möller ◽  
Nathalie Hollenstein ◽  
Andreas Binder ◽  
Matthias Oechsner ◽  
...  

In Parkinson's disease (PD) patients, visual misperceptions are a major problem within the non-motor symptoms. Pareidolia, i.e., the tendency to perceive a specific, meaningful image in an ambiguous visual pattern, is a phenomenon that occurs also in healthy subjects. Literature suggests that the perception of face pareidolia may be increased in patients with neurodegenerative diseases. We aimed to examine, within the same experiment, face perception and the production of face pareidolia in PD patients and healthy controls (HC). Thirty participants (15 PD patients and 15 HC) were presented with 47 naturalistic photographs in which faces were embedded or not. The likelihood to perceive the embedded faces was modified by manipulating their transparency. Participants were asked to decide for each photograph whether a face was embedded or not. We found that PD patients were significantly less likely to recognize embedded faces than controls. However, PD patients also perceived faces significantly more often in locations where none were actually present than controls. Linear regression analyses showed that gender, age, hallucinations, and Multiple-Choice Vocabulary Intelligence Test (MWT) score were significant predictors of face pareidolia production in PD patients. Montreal Cognitive Assessment (MoCA) was a significant predictor for pareidolia production in PD patients in trials in which a face was embedded in another region [F(1, 13) = 24.4, p = <0.001]. We conclude that our new embedded faces paradigm is a useful tool to distinguish face perception performance between HC and PD patients. Furthermore, we speculate that our results observed in PD patients rely on disturbed interactions between the Dorsal (DAN) and Ventral Attention Networks (VAN). In photographs in which a face is present, the VAN may detect this as a behaviourally relevant stimulus. However, due to the deficient communication with the DAN in PD patients, the DAN would not direct attention to the correct location, identifying a face at a location where actually none is present.


2021 ◽  
Vol 57 (2) ◽  
pp. 177-183
Author(s):  
Seong Hyun Moon ◽  
◽  
Rahul Soangra ◽  
Christopher F. Frames ◽  
Thurmon E. Lockhart ◽  
...  

Parkinson’s Disease (PD) is a neurodegenerative disorder affecting the substantia nigra, which leads to more than half of PD patients are considered to be at high risk of falling. Recently, Inertial Measurement Unit (IMU) sensors have shown great promise in the classification of activities of daily living (ADL) such as walking, standing, sitting, and laying down, considered to be normal movement in daily life. Measuring physical activity level from longitudinal ADL monitoring among PD patients could provide insights into their fall mechanisms. In this study, six PD patients (mean age=74.3±6.5 years) and six young healthy subjects (mean age=19.7±2.7 years) were recruited. All the subjects were asked to wear the single accelerometer, DynaPort MM+ (Motion Monitor+, McRoberts BV, The Hague, Netherlands), with a sampling frequency of 100 Hz located at the L5-S1 spinal area for 3 days. Subjects maintained a log of activities they performed and only removed the sensor while showering or performing other aquatic activities. The resultant acceleration was filtered using high and low pass Butterworth filters to determine dynamic and stationary activities. As a result, it was found that healthy young subjects performed significantly more dynamic activities (13.2%) when compared to PD subjects (7%), in contrast, PD subjects (92.9%) had significantly more stationary activities than young healthy subjects (86.8%).


NeuroImage ◽  
2019 ◽  
Vol 190 ◽  
pp. 118-132 ◽  
Author(s):  
Felix Sebastian Nettersheim ◽  
Philipp Alexander Loehrer ◽  
Immo Weber ◽  
Fabienne Jung ◽  
Till Anselm Dembek ◽  
...  

Author(s):  
Sophie V. Adama ◽  
Martin Bogdan

This article describes how Stroke and Parkinson's disease are two illnesses that particularly affect motor functions. With the advancements in technology, there is a lot of research focusing on finding solutions: to contribute to neuroplasticity in the first case, and to reduce symptoms in the second case. This manuscript describes the design of a brain-computer interface system (BCI) system paired with an electrical muscle stimulation suit for stroke rehabilitation and the reduction of tremors caused by Parkinson's disease. The idea is to strengthen the sensory-motor feedback loop, which will allow a more stabilized control of the affected extremities by taking into account the patient's motivation. To do so, his brain signals are measured to detect his intention to attempt to execute a movement, in contrast to the classical approach where the movement executions are imposed. A first feasibility study was completed. The author's next step is planning to test the system first with healthy subjects and finally with patients.


Sign in / Sign up

Export Citation Format

Share Document