neurodegenerative disorder
Recently Published Documents


TOTAL DOCUMENTS

2172
(FIVE YEARS 1411)

H-INDEX

63
(FIVE YEARS 16)

Author(s):  
Letizzia DALL’AGNOL ◽  
Alice Medeiros de SOUZA ◽  
Lilian Campos AMADEU ◽  
Eleni VOSNIADOU ◽  
Fernanda Ishida CORRÊA

Parkinson’s disease (PD) is a central nervous system neurodegenerative disorder that primarily affects the motor system, decreasing motor coordination, balance and generating tremors, and a progressive loss of everyday mobility, including walking. This study was conducted to verify the effects of Transcranial Direct Current Stimulation (tDCS) on balance, motor control, and the quality of life in Parkinson’s disease patients. The patient received three treatments consisting of 10 sessions of 20 minutes each and a one-week interval between treatments. Active stimulation was applied on the primary motor cortex (M1), the dorsolateral prefrontal cortex (DLPFC), and the dorsolateral prefrontal cortex (D Sham-tDCS. DLPFC stimulation produced the best improvements in terms of motor control, balance, gait, and overall PD symptoms, as evaluated by different scales and questionnaires. As a result, active stimulation of the DLPFC produced superior outcomes and may contribute to treating Parkinson’s disease.


2022 ◽  
Vol 8 ◽  
Author(s):  
Matthieu Lilamand ◽  
François Mouton-Liger ◽  
Emmanuelle Di Valentin ◽  
Marta Sànchez Ortiz ◽  
Claire Paquet

Alzheimer's disease (AD) is the most frequent age-related neurodegenerative disorder, with no curative treatment available so far. Alongside the brain deposition of β-amyloid peptide and hyperphosphorylated tau, neuroinflammation triggered by the innate immune response in the central nervous system, plays a central role in the pathogenesis of AD. Glucose usually represents the main fuel for the brain. Glucose metabolism has been related to neuroinflammation, but also with AD lesions. Hyperglycemia promotes oxidative stress and neurodegeneration. Insulinoresistance (e.g., in type 2 diabetes) or low IGF-1 levels are associated with increased β-amyloid production. However, in the absence of glucose, the brain may use another fuel: ketone bodies (KB) produced by oxidation of fatty acids. Over the last decade, ketogenic interventions i.e., ketogenic diets (KD) with very low carbohydrate intake or ketogenic supplementation (KS) based on medium-chain triglycerides (MCT) consumption, have been studied in AD animal models, as well as in AD patients. These interventional studies reported interesting clinical improvements in animals and decrease in neuroinflammation, β-amyloid and tau accumulation. In clinical studies, KS and KD were associated with better cognition, but also improved brain metabolism and AD biomarkers. This review summarizes the available evidence regarding KS/KD as therapeutic options for individuals with AD. We also discuss the current issues and potential adverse effects associated with these nutritional interventions. Finally, we propose an overview of ongoing and future registered trials in this promising field.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 299
Author(s):  
Fernanda Murtinheira ◽  
Mafalda Migueis ◽  
Ricardo Letra-Vilela ◽  
Mickael Diallo ◽  
Andrea Quezada ◽  
...  

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disorder commonly diagnosed in infants and characterized by progressive cerebellar ataxia, spasticity, motor sensory neuropathy and axonal demyelination. ARSACS is caused by mutations in the SACS gene that lead to truncated or defective forms of the 520 kDa multidomain protein, sacsin. Sacsin function is exclusively studied on neuronal cells, where it regulates mitochondrial network organization and facilitates the normal polymerization of neuronal intermediate filaments (i.e., neurofilaments and vimentin). Here, we show that sacsin is also highly expressed in astrocytes, C6 rat glioma cells and N9 mouse microglia. Sacsin knockout in C6 cells (C6Sacs−/−) induced the accumulation of the glial intermediate filaments glial fibrillary acidic protein (GFAP), nestin and vimentin in the juxtanuclear area, and a concomitant depletion of mitochondria. C6Sacs−/− cells showed impaired responses to oxidative challenges (Rotenone) and inflammatory stimuli (Interleukin-6). GFAP aggregation is also associated with other neurodegenerative conditions diagnosed in infants, such as Alexander disease or Giant Axonal Neuropathy. Our results, and the similarities between these disorders, reinforce the possible connection between ARSACS and intermediate filament-associated diseases and point to a potential role of glia in ARSACS pathology.


2022 ◽  
Vol 2022 ◽  
pp. 1-18
Author(s):  
Stefano Farioli-Vecchioli ◽  
Valentina Ricci ◽  
Silvia Middei

The mammalian hippocampal dentate gyrus is a niche for adult neurogenesis from neural stem cells. Newborn neurons integrate into existing neuronal networks, where they play a key role in hippocampal functions, including learning and memory. In the ageing brain, neurogenic capability progressively declines while in parallel increases the risk for developing Alzheimer’s disease (AD), the main neurodegenerative disorder associated with memory loss. Numerous studies have investigated whether impaired adult neurogenesis contributes to memory decline in AD. Here, we review the literature on adult hippocampal neurogenesis (AHN) and AD by focusing on both human and mouse model studies. First, we describe key steps of AHN, report recent evidence of this phenomenon in humans, and describe the specific contribution of newborn neurons to memory, as evinced by animal studies. Next, we review articles investigating AHN in AD patients and critically examine the discrepancies among different studies over the last two decades. Also, we summarize researches investigating AHN in AD mouse models, and from these studies, we extrapolate the contribution of molecular factors linking AD-related changes to impaired neurogenesis. Lastly, we examine animal studies that link impaired neurogenesis to specific memory dysfunctions in AD and review treatments that have the potential to rescue memory capacities in AD by stimulating AHN.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 293
Author(s):  
Maria Garofalo ◽  
Cecilia Pandini ◽  
Matteo Bordoni ◽  
Emanuela Jacchetti ◽  
Luca Diamanti ◽  
...  

Superoxide dismutase 1 (SOD1) is one of the causative genes associated with amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder. SOD1 aggregation contributes to ALS pathogenesis. A fraction of the protein is localized in the nucleus (nSOD1), where it seems to be involved in the regulation of genes participating in the oxidative stress response and DNA repair. Peripheral blood mononuclear cells (PBMCs) were collected from sporadic ALS (sALS) patients (n = 18) and healthy controls (n = 12) to perform RNA-sequencing experiments and differential expression analysis. Patients were stratified into groups with “high” and “low” levels of nSOD1. We obtained different gene expression patterns for high- and low-nSOD1 patients. Differentially expressed genes in high nSOD1 form a cluster similar to controls compared to the low-nSOD1 group. The pathways activated in high-nSOD1 patients are related to the upregulation of HSP70 molecular chaperones. We demonstrated that, in this condition, the DNA damage is reduced, even under oxidative stress conditions. Our findings highlight the importance of the nuclear localization of SOD1 as a protective mechanism in sALS patients.


2022 ◽  
Vol 14 ◽  
Author(s):  
Zhen Lan ◽  
Yanting Chen ◽  
Jiali Jin ◽  
Yun Xu ◽  
Xiaolei Zhu

Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.


2022 ◽  
Vol 15 ◽  
Author(s):  
Lavinia Floreani ◽  
Federico Ansaloni ◽  
Damiano Mangoni ◽  
Elena Agostoni ◽  
Remo Sanges ◽  
...  

Transposable elements (TEs) are mobile genetic elements that made up about half the human genome. Among them, the autonomous non-LTR retrotransposon long interspersed nuclear element-1 (L1) is the only currently active TE in mammals and covers about 17% of the mammalian genome. L1s exert their function as structural elements in the genome, as transcribed RNAs to influence chromatin structure and as retrotransposed elements to shape genomic variation in somatic cells. L1s activity has been shown altered in several diseases of the nervous system. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by an expansion of a CAG repeat in the HTT gene which leads to a gradual loss of neurons most prominently in the striatum and, to a lesser extent, in cortical brain regions. The length of the expanded CAG tract is related to age at disease onset, with longer repeats leading to earlier onset. Here we carried out bioinformatic analysis of public RNA-seq data of a panel of HD mouse models showing that a decrease of L1 RNA expression recapitulates two hallmarks of the disease: it correlates to CAG repeat length and it occurs in the striatum, the site of neurodegeneration. Results were then experimentally validated in HttQ111 knock-in mice. The expression of L1-encoded proteins was independent from L1 RNA levels and differentially regulated in time and tissues. The pattern of expression L1 RNAs in human HD post-mortem brains showed similarity to mouse models of the disease. This work suggests the need for further study of L1s in HD and adds support to the current hypothesis that dysregulation of TEs may be involved in neurodegenerative diseases.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Gabriela Novak ◽  
Dimitrios Kyriakis ◽  
Kamil Grzyb ◽  
Michela Bernini ◽  
Sophie Rodius ◽  
...  

AbstractParkinson’s disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson’s disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.


2022 ◽  
Author(s):  
Wen Li ◽  
Guohua Jin

Alzheimer\'s disease (AD) is a devastating neurodegenerative disorder and the most common form of dementia worldwide. Although the great progress on the prevention and treatment of AD, no effective therapies are available as yet. With the increasing incidence of AD, it has brought a growing burden to the family and society. Histopathologically, AD is characterized by the presence of myloid β (Aβ) plaques composed of Aβ and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau proteins, which lead to neuronal loss. However, the full spectrum of precise molecular mechanism that contribute to AD pathogenesis remains largely unknown. circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs that play a vital role in post-transcriptional regulation. Recent reports showed circRNAs to be an important player in the development of neurodegenerative diseases like AD. In this chapter, we review recent progress on understanding the role of circRNAs in AD, and many studies implicating specific circRNAs in the development of the disease. Moreover, we explore the potential promise of these findings for future diagnosis and treatment.


2022 ◽  
Author(s):  
Vasileios Toulis ◽  
Ricardo Casaroli-Marano ◽  
Anna Camos-Carreras ◽  
Marc Figueras-Roca ◽  
Bernardo Sanchez-Dalmau ◽  
...  

Spinocerebellar ataxia type 3 is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine (polyQ)-encoding CAG repeat in the ATXN3 gene. Because the ATXN3 protein regulates photoreceptor ciliogenesis and phagocytosis, we aimed to explore whether expanded polyQ ATXN3 impacts retinal function and integrity in SCA3 patients and transgenic mice. We evaluated the retinal structure and function in five patients with Spinocerebellar ataxia type 3 and in a transgenic mouse model of this disease (YACMJD84.2, Q84) using, respectively, optical coherence tomography (OCT) and electroretinogram (ERG). We further determined in the transgenic mice: a) the retinal expression pattern of ATXN3 and assessed the distribution of cones and rods by immunofluorescence (IF); and b) the retinal ultrastructure by transmission electron microscopy (TEM). Some patients with Spinocerebellar ataxia type 3 in our cohort revealed: i) reduced central macular thickness indirectly correlated with disease duration; ii) decreased thickness of the macula and the ganglion cell layer, and reduced macula volume inversely correlated with disease severity (SARA score); and iii) electrophysiological dysfunction of cones, rods, and inner retinal cells. Transgenic mice replicated the human OCT and ERG findings with aged homozygous Q84/Q84 mice showing a stronger phenotype accompanied by further thinning of the outer nuclear layer and photoreceptor layer and highly reduced cone and rod activities, thus supporting severe retinal dysfunction in these mice. In addition, Q84 mice showed progressive accumulation of ATXN3-positive aggregates throughout several retinal layers and depletion of cones alongside the disease course. TEM analysis of aged Q84/Q84 mouse retinas supported the IF ATXN3 aggregation findings by revealing the presence of high number of negative electron dense puncta in ganglion cells, inner plexiform and inner nuclear layers, and further showed thinning of the outer plexiform layer, thickening of the retinal pigment epithelium and elongation of apical microvilli. Our results indicate that retinal alterations detected by non-invasive eye examination using OCT and ERG could represent a biological marker of disease progression and severity in patients with Spinocerebellar ataxia type 3.


Sign in / Sign up

Export Citation Format

Share Document