Vascular Plant and Bryophyte Diversity along Elevation Gradients in the Alps

Author(s):  
J.-P. Theurillat ◽  
A. Schlüssel ◽  
P. Geissler ◽  
A. Guisan ◽  
C. Velluti ◽  
...  
Author(s):  
Jonathan Walter ◽  
Atticus Stovall ◽  
Jeff Atkins

Questions: Elevation, biodiversity, and forest structure are commonly correlated, but their relationships near the positive extremes of biodiversity and elevation are unclear. We asked 1) How does forest structure vary with elevation in a high biodiversity, high topographic complexity region? 2) Does forest structure predict vascular plant biodiversity? 3) Is plant biodiversity more strongly related to elevation or to forest structure? Location: Great Smoky Mountains National Park, USAMethods: We used terrestrial LiDAR scanning (TLS) to characterize vegetation structure in 12 forest plots. We combined two new canopy structural complexity metrics with traditional TLS-derived forest structural metrics and vascular plant biodiversity data to investigate correlations among forest structure metrics, biodiversity, and elevation. Results: Forest structure varied widely across plots spanning the elevational range of GRSM. Our new measures of canopy density (Depth) and structural complexity (σDepth) were sensitive to structural variations and effectively summarized horizontal and vertical dimensions of structural complexity. Vascular plant biodiversity was negatively correlated with elevation, and more strongly positively correlated with vegetation structure variables. Conclusions: The strong correlations we observed between canopy structural complexity and biodiversity suggest that structural complexity metrics could be used to assay plant biodiversity over large areas in concert with airborne and spaceborne platforms.


Vegetatio ◽  
1979 ◽  
Vol 40 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Thomas D. Lee ◽  
George H. Roi

2021 ◽  
Vol 9 ◽  
Author(s):  
Lena Nicklas ◽  
Janette Walde ◽  
Sonja Wipf ◽  
Andrea Lamprecht ◽  
Martin Mallaun ◽  
...  

The alpine life zone is expected to undergo major changes with ongoing climate change. While an increase of plant species richness on mountain summits has generally been found, competitive displacement may result in the long term. Here, we explore how species richness and surface cover types (vascular plants, litter, bare ground, scree and rock) changed over time on different bedrocks on summits of the European Alps. We focus on how species richness and turnover (new and lost species) depended on the density of existing vegetation, namely vascular plant cover. We analyzed permanent plots (1 m × 1 m) in each cardinal direction on 24 summits (24 × 4 × 4), with always four summits distributed along elevation gradients in each of six regions (three siliceous, three calcareous) across the European Alps. Mean summer temperatures derived from downscaled climate data increased synchronously over the past 30 years in all six regions. During the investigated 14 years, vascular plant cover decreased on siliceous bedrock, coupled with an increase in litter, and it marginally increased on higher calcareous summits. Species richness showed a unimodal relationship with vascular plant cover. Richness increased over time on siliceous bedrock but slightly decreased on calcareous bedrock due to losses in plots with high plant cover. Our analyses suggest contrasting and complex processes on siliceous versus calcareous summits in the European Alps. The unimodal richness-cover relationship and species losses at high plant cover suggest competition as a driver for vegetation change on alpine summits.


2019 ◽  
Vol 20 (1) ◽  
pp. 174 ◽  
Author(s):  
James Buckley ◽  
Foteini G. Pashalidou ◽  
Martin C. Fischer ◽  
Alex Widmer ◽  
Mark C. Mescher ◽  
...  

Variation in local herbivore pressure along elevation gradients is predicted to drive variation in plant defense traits. Yet, the extent of intraspecific variation in defense investment along elevation gradients, and its effects on both herbivore preference and performance, remain relatively unexplored. Using populations of Arabidopsis halleri (Brassicaceae) occurring at different elevations in the Alps, we tested for associations between elevation, herbivore damage in the field, and constitutive chemical defense traits (glucosinolates) assayed under common-garden conditions. Additionally, we examined the feeding preferences and performance of a specialist herbivore, the butterfly Pieris brassicae, on plants from different elevations in the Alps. Although we found no effect of elevation on the overall levels of constitutive glucosinolates in leaves, relative amounts of indole glucosinolates increased significantly with elevation and were negatively correlated with herbivore damage in the field. In oviposition preference assays, P. brassicae females laid fewer eggs on plants from high-elevation populations, although larval performance was similar on populations from different elevations. Taken together, these results support the prediction that species distributed along elevation gradients exhibit genetic variation in chemical defenses, which can have consequences for interactions with herbivores in the field.


Author(s):  
John Tyndall
Keyword(s):  

2009 ◽  
Author(s):  
Hermann Alexander Berlepsch ◽  
Leslie Stephen
Keyword(s):  

2014 ◽  
Author(s):  
William John Law
Keyword(s):  

1879 ◽  
Vol 7 (164supp) ◽  
pp. 2616-2616
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document