chemical defenses
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 99)

H-INDEX

48
(FIVE YEARS 5)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 537
Author(s):  
Philippe Savarino ◽  
Emmanuel Colson ◽  
Guillaume Caulier ◽  
Igor Eeckhaut ◽  
Patrick Flammang ◽  
...  

Saponins are plant and marine animal specific metabolites that are commonly considered as molecular vectors for chemical defenses against unicellular and pluricellular organisms. Their toxicity is attributed to their membranolytic properties. Modifying the molecular structures of saponins by quantitative and selective chemical reactions is increasingly considered to tune the biological properties of these molecules (i) to prepare congeners with specific activities for biomedical applications and (ii) to afford experimental data related to their structure–activity relationship. In the present study, we focused on the sulfated saponins contained in the viscera of Holothuria scabra, a sea cucumber present in the Indian Ocean and abundantly consumed on the Asian food market. Using mass spectrometry, we first qualitatively and quantitatively assessed the saponin content within the viscera of H. scabra. We detected 26 sulfated saponins presenting 5 different elemental compositions. Microwave activation under alkaline conditions in aqueous solutions was developed and optimized to quantitatively and specifically induce the desulfation of the natural saponins, by a specific loss of H2SO4. By comparing the hemolytic activities of the natural and desulfated extracts, we clearly identified the sulfate function as highly responsible for the saponin toxicity.


2021 ◽  
Author(s):  
Kannon Pearson ◽  
Rebecca Tarvin

Toads of the genus Atelopus are chemically defended by a unique combination of endogenously synthesized cardiotoxins (bufadienolides) and what are likely exogenously sequestered neurotoxins (guanidinium alkaloids). Investigation into Atelopus small-molecule chemical defenses has been primarily concerned with identifying and characterizing various forms of these toxins while largely overlooking their ecological roles and evolutionary implications. In addition to describing the extent of knowledge about Atelopus toxin structures, pharmacology, and biological sources, we review the detection, identification, and quantification methods used in studies of Atelopus toxins to date and conclude that many known toxin profiles are unlikely to be comprehensive because of methodological and sampling limitations. Patterns in existing data suggest that both environmental (toxin availability) and genetic (capacity to synthesize or sequester toxins) factors influence toxin profiles. From an ecological and evolutionary perspective, we summarize the possible selective pressures acting on Atelopus toxicity and toxin profiles, including predation, intraspecies communication, disease, and reproductive status. Ultimately, we intend to provide a basis for future ecological, evolutionary, and biochemical research on Atelopus.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258218
Author(s):  
Koji Mochida ◽  
Akira Mori

Newts and salamanders show remarkable diversity in antipredator behavior, developed to enhance their chemical defenses and/or aposematism. The present study reports on the antipredator behavior of newts (Cynops pyrrhogaster) in response to snakes. Newts displayed a significant amount of tail-wagging and tail-undulation in response to a contact stimulus from the snake’s tongue, which is a snake-specific predator stimulus, as compared to a control stimulus (behavioral scores: tongue, 1.05 ± 0.41; control, 0.15 ± 0.15). Newts that were kept in warm temperature conditions, 20°C (at which snakes are active in nature), performed tail displays more frequently than newts kept in low-temperature conditions, 4°C (at which snakes are inactive in nature). Our results suggest that the tail displays of C. pyrrhogaster could function as an antipredator defense; they direct a snake’s attention to its tail to prevent the snake from attacking more vulnerable body parts. We also discussed the reason for inter-populational variation in the tendency of newts to perform tail displays.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 629
Author(s):  
Jianing Chen ◽  
Lin Xu ◽  
Yanrong Zhou ◽  
Bingnan Han

The actinomycetes have proven to be a rich source of bioactive secondary metabolites and play a critical role in the development of pharmaceutical researches. With interactions of host organisms and having special ecological status, the actinomycetes associated with marine animals, marine plants, macroalgae, cyanobacteria, and lichens have more potential to produce active metabolites acting as chemical defenses to protect the host from predators as well as microbial infection. This review focuses on 536 secondary metabolites (SMs) from actinomycetes associated with these marine organisms covering the literature to mid-2021, which will highlight the taxonomic diversity of actinomycetes and the structural classes, biological activities of SMs. Among all the actinomycetes listed, members of Streptomyces (68%), Micromonospora (6%), and Nocardiopsis (3%) are dominant producers of secondary metabolites. Additionally, alkaloids (37%), polyketides (33%), and peptides (15%) comprise the largest proportion of natural products with mostly antimicrobial activity and cytotoxicity. Furthermore, the data analysis and clinical information of SMs have been summarized in this article, suggesting that some of these actinomycetes with multiple host organisms deserve more attention to their special ecological status and genetic factors.


2021 ◽  
Author(s):  
Guy Polturak ◽  
Martin Dippe ◽  
Michael J Stephenson ◽  
Rajesh Chandra Misra ◽  
Charlotte Owen ◽  
...  

Wheat is one of the most widely grown food crops in the world. However, it succumbs to numerous pests and pathogens that cause substantial yield losses. A better understanding of biotic stress responses in wheat is thus of major importance. Here we identify previously unknown pathogen-induced biosynthetic pathways that produce a diverse set of molecules, including flavonoids, diterpenes and triterpenes. These pathways are encoded by six biosynthetic gene clusters and share a common regulatory network. We further identify associations with known or novel phytoalexin clusters in other cereals and grasses. Our results significantly advance the understanding of chemical defenses in wheat and open up new avenues for enhancing disease resistance in this agriculturally important crop.


Oecologia ◽  
2021 ◽  
Author(s):  
Amy M. Trowbridge ◽  
Henry D. Adams ◽  
Adam Collins ◽  
Lee Turin Dickman ◽  
Charlotte Grossiord ◽  
...  

AbstractHeat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it unclear how older age classes that are more vulnerable to bark beetles might respond to stress. Furthermore, we lack a clear picture of what carbon resources might be prioritized to support monoterpene synthesis under drought stress. To address this, we measured needle and woody tissue monoterpene concentrations and physiological variables simultaneously from mature piñon pines (Pinus edulis) from a unique temperature and drought manipulation field experiment. While heat had no effect on total monoterpene concentrations, trees under combined heat and drought stress exhibited ~ 85% and 35% increases in needle and woody tissue, respectively, over multiple years. Plant physiological variables like maximum photosynthesis each explained less than 10% of the variation in total monoterpenes for both tissue types while starch and glucose + fructose measured 1-month prior explained ~ 45% and 60% of the variation in woody tissue total monoterpene concentrations. Although total monoterpenes increased under combined stress, some key monoterpenes with known roles in bark beetle ecology decreased. These shifts may make trees more favorable for bark beetle attack rather than well defended, which one might conclude if only considering total monoterpene concentrations. Our results point to cumulative and synergistic effects of heat and drought that may reprioritize carbon allocation of specific non-structural carbohydrates toward defense.


2021 ◽  
Author(s):  
Yu Okamura ◽  
Ai Sato ◽  
Lina Kawaguchi ◽  
Atsushi J. Nagano ◽  
Masashi Murakami ◽  
...  

Herbivorous insects have evolved counteradaptations to overcome the chemical defenses of their host plants. Several of these counteradaptations have been elucidated at the molecular level, in particular for insects specialized on cruciferous host plants. While the importance of these counteradaptations for host plant colonization is well established, little is known about their microevolutionary dynamics in the field. In this study, we examine patterns of host plant use and insect counteradaptation in three Pieris butterfly species across Japan. The larvae of these butterflies express nitrile-specifier protein (NSP) and its paralog major allergen (MA) in their gut to overcome the highly diversified glucosinolate-myrosinase defense system of their cruciferous host plants. Pieris napi and Pieris melete colonize wild Brassicaceae whereas Pieris rapae typically uses cultivated Brassica as a host, regardless of the local composition of wild crucifers. As expected, NSP and MA diversity was independent of the local composition of wild Brassicaceae in P. rapae. In contrast, NSP diversity correlated with local host plant diversity in both species that preferred wild Brassicaceae. P. melete and P. napi both revealed two distinct major NSP alleles, which shaped diversity among local populations, albeit with different evolutionary trajectories. In comparison, MA showed no indication for local adaptation. Altogether, MA appeared to be evolutionary more conserved than NSP, suggesting that both genes play different roles in diverting host plant chemical defense.


2021 ◽  
Author(s):  
Ainhoa Martínez-Medina ◽  
Crispus M Mbaluto ◽  
Anne Maedicke ◽  
Alexander Weinhold ◽  
Fredd Vergara ◽  
...  

Abstract Shoot herbivores may influence the communities of herbivores associated with the roots via inducible defenses. However, the molecular mechanisms and hormonal signaling underpinning the systemic impact of leaf herbivory on root-induced responses against nematodes remain poorly understood. By using tomato (Solanum lycopersicum) as a model plant, we explored the impact of leaf herbivory by Manduca sexta on the performance of the root knot nematode Meloidogyne incognita. By performing glasshouse bioassays, we found that leaf herbivory reduced M. incognita performance in the roots. By analyzing the root expression profile of a set of oxylipin-related marker genes and jasmonate root content, we show that leaf herbivory systemically activates the 13-Lipoxigenase (LOX) and 9-LOX branches of the oxylipin pathway in roots and counteracts the M. incognita-triggered repression of the 13-LOX branch. By using untargeted metabolomics, we also found that leaf herbivory counteracts the M. incognita-mediated repression of putative root chemical defenses. To explore the signaling involved in this shoot-to-root interaction, we performed glasshouse bioassays with grafted plants compromised in jasmonate synthesis or perception, specifically in their shoots. We demonstrated the importance of an intact shoot jasmonate perception, whereas having an intact jasmonate biosynthesis pathway was not essential for this shoot-to-root interaction. Our results highlight the impact of leaf herbivory on the ability of M. incognita to manipulate root defenses and point to an important role for the jasmonate signaling pathway in shoot-to-root signaling.


Sign in / Sign up

Export Citation Format

Share Document