Bryophyte and understory vascular plant beta diversity in relation to moisture and elevation gradients

Vegetatio ◽  
1979 ◽  
Vol 40 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Thomas D. Lee ◽  
George H. Roi
Author(s):  
Jonathan Walter ◽  
Atticus Stovall ◽  
Jeff Atkins

Questions: Elevation, biodiversity, and forest structure are commonly correlated, but their relationships near the positive extremes of biodiversity and elevation are unclear. We asked 1) How does forest structure vary with elevation in a high biodiversity, high topographic complexity region? 2) Does forest structure predict vascular plant biodiversity? 3) Is plant biodiversity more strongly related to elevation or to forest structure? Location: Great Smoky Mountains National Park, USAMethods: We used terrestrial LiDAR scanning (TLS) to characterize vegetation structure in 12 forest plots. We combined two new canopy structural complexity metrics with traditional TLS-derived forest structural metrics and vascular plant biodiversity data to investigate correlations among forest structure metrics, biodiversity, and elevation. Results: Forest structure varied widely across plots spanning the elevational range of GRSM. Our new measures of canopy density (Depth) and structural complexity (σDepth) were sensitive to structural variations and effectively summarized horizontal and vertical dimensions of structural complexity. Vascular plant biodiversity was negatively correlated with elevation, and more strongly positively correlated with vegetation structure variables. Conclusions: The strong correlations we observed between canopy structural complexity and biodiversity suggest that structural complexity metrics could be used to assay plant biodiversity over large areas in concert with airborne and spaceborne platforms.


Author(s):  
J.-P. Theurillat ◽  
A. Schlüssel ◽  
P. Geissler ◽  
A. Guisan ◽  
C. Velluti ◽  
...  

2021 ◽  
Author(s):  
Angelino Carta ◽  
Lorenzo Peruzzi ◽  
Santiago Ramirez Barahona

Existing global regionalisation schemes for plants consider the compositional affinities among biotas, but these have not considered phylogenetic information explicitly. Incorporating phylogenetic information may substantially advance our understanding of the relationships among regions and the synopsis of biogeographical schemes, because phylogeny captures information on the evolutionary history of taxa. Here, we present the first phytogeographical delineation of the global vascular flora based on the evolutionary relationships of species. We analysed 8,738,520 geographical occurrence records for vascular plant species together with a time-calibrated phylogenetic tree including 67,420 species. We estimated species composition within 200x200 km grid cells across the world, and used a metric of phylogenetic beta diversity to generate a phylogenetic delineation of floristic regions. We contrasted these results with a regionalisation generated using a taxonomic beta diversity metric. We identified 16 phylogenetically distinct phytogeographical units, deeply split into two main clusters that broadly correspond to the Laurasia-Gondwana separation. Our regionalisation broadly matches currently recognized phytogeographical classifications, but also highlights that the Gondwanan area is split into a large Holotropical cluster and an Australian-NeoZelandic-Patagonian cluster. In turn, we found that the northernmost and southernmost units have the most evolutionarily distinct vascular plant assemblages. In contrast, taxonomic dissimilarity returned a regionalisation composed of 23 units with a high degree of shared taxa between Laurasian and Gondwanan areas, with no clear split among their biotas. The integration of phylogenetic information provided new insights into the historical relationships among phytogeographical units, enabling the identification of three large, clearly differentiated biotas, here referred to as kingdoms: Holarctic, Holotropical, and Austral. Our regionalization scheme provides further evidence for delineating transition zones between the Holarctic and Holotropical kingdoms. The latitudinal patterns of evolutionary distinctiveness of vascular plant assemblages are consistent with recent evidence of higher and more recent diversification of flowering plants outside tropical regions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lena Nicklas ◽  
Janette Walde ◽  
Sonja Wipf ◽  
Andrea Lamprecht ◽  
Martin Mallaun ◽  
...  

The alpine life zone is expected to undergo major changes with ongoing climate change. While an increase of plant species richness on mountain summits has generally been found, competitive displacement may result in the long term. Here, we explore how species richness and surface cover types (vascular plants, litter, bare ground, scree and rock) changed over time on different bedrocks on summits of the European Alps. We focus on how species richness and turnover (new and lost species) depended on the density of existing vegetation, namely vascular plant cover. We analyzed permanent plots (1 m × 1 m) in each cardinal direction on 24 summits (24 × 4 × 4), with always four summits distributed along elevation gradients in each of six regions (three siliceous, three calcareous) across the European Alps. Mean summer temperatures derived from downscaled climate data increased synchronously over the past 30 years in all six regions. During the investigated 14 years, vascular plant cover decreased on siliceous bedrock, coupled with an increase in litter, and it marginally increased on higher calcareous summits. Species richness showed a unimodal relationship with vascular plant cover. Richness increased over time on siliceous bedrock but slightly decreased on calcareous bedrock due to losses in plots with high plant cover. Our analyses suggest contrasting and complex processes on siliceous versus calcareous summits in the European Alps. The unimodal richness-cover relationship and species losses at high plant cover suggest competition as a driver for vegetation change on alpine summits.


Botany ◽  
2018 ◽  
Vol 96 (8) ◽  
pp. 499-509
Author(s):  
Milène Courchesne ◽  
Stéphanie Pellerin ◽  
Marianne Bachand ◽  
Steeve D. Côté ◽  
Monique Poulin

Peatlands could become important foraging habitats, and their plant communities threatened, in areas with an overabundance of large herbivores. Peatland response to herbivore exclusion may vary widely according to abiotic conditions and associated species because of a strong minerotrophic gradient. We assessed the impact of white-tailed deer (Odocoileus virginianus Zimm.) on peatland vegetation using an exclosure experiment. A total of 53 pairs of exclosures and unprotected plots were set up in bogs (13 pairs), sedge fens (20), shrub fens (7), and laggs (13), and surveyed prior to exclosure construction as well as three, five, and eight years after. Vascular plant composition of exclosures diverged from that of unprotected plots through time only in shrub fens and laggs. Bryophytes remained constant in all habitats. On average, shrub cover was 30% higher in exclosures in all habitats after five years, whereas herb cover increased only in laggs, by 43%, after eight years. Reclassification of sites by pH showed deer exclusion promoted alpha diversity in low- and high-moderate rich fens (pH 5.3–6.8) and beta diversity in the latter as well as in rich fens (pH 6.3–7.5). Overall, our results suggest that conservation efforts in areas with overabundant large herbivores should target richer peatland habitats since they showed a higher resilience and fostered alpha and beta diversity.


Author(s):  
E Martins Camara ◽  
Tubino Andrade Andrade-Tub ◽  
T Pontes Franco ◽  
LN dos Santos ◽  
AFGN dos Santos ◽  
...  

2014 ◽  
Vol 25 (3-4) ◽  
pp. 53-68
Author(s):  
I. V. Goncharenko ◽  
H. M. Holyk

Cenotic diversity and leading ecological factors of its floristic differentiation were studied on an example of two areas – Kyiv parks "Nivki" and "Teremki". It is shown that in megalopolis the Galeobdoloni-Carpinetum impatientosum parviflorae subassociation is formed under anthropogenic pressure on the typical ecotope of near-Dnieper hornbeam oak forests on fresh gray-forest soils. The degree of anthropogenic transformation of cenofloras can be estimated by the number of species of Robinietea and Galio-Urticetea classes, as well as neophytes and cultivars. Phytoindication for hemeroby index may be also used in calculation. We propose the modified index of biotic dispersion (normalized by alpha-diversity) for the estimation of ecophytocenotic range (beta-diversity) of releves series. We found that alpha-diversity initially increases (due to the invasion of antropophytes) at low level of antropogenic pressure, then it decreases (due to the loss of aboriginal species) secondarily with increasing of human impact. Also we found that beta-diversity (differential diversity) decreases, increasing homogeneity of plant cover, under the influence of anthropogenic factor. Vegetation classification was completed by a new original method of cluster analysis, designated as DRSA («distance-ranked sorting assembling»). The classification quality is suggested to be validated on the "seriation" diagram, which is а distance matrix between objects with gradient filling. Dark diagonal blocks confirm clusters’ density (intracluster compactness), uncolored off-diagonal blocks are evidence in favor of clusters’ isolation (intercluster distinctness). In addition, distinction of clusters (syntaxa) in ordination area suggests their independence. For phytoindication we propose to include only species with more than 10% constancy. Furthermore, for the description of syntaxonomic amplitude we suggest to use 25%-75% interquartile scope instead of mean and standard deviation. It is shown that comparative analysis of syntaxa for each ecofactor is convenient to carry out by using violin (bulb) plots. A new approach to the phytoindication of syntaxa, designated as R-phytoindication, was proposed for our study. In this case, the ecofactor values, calculated for individual releves, are not taken into account, however, the composition of cenoflora with species constancies is used that helps us to minimize for phytoindication the influence of non-typical species. We suggested a syntaxon’s amplitude to be described by more robust statistics: for the optimum of amplitude (central tendency) – by a median (instead of arithmetic mean), and for the range of tolerance – by an interquartile scope (instead of standard deviation). We assesses amplitudes of syntaxa by phytoindication method for moisture (Hd), acidity (Rc), soil nitrogen content (Nt), wetting variability (vHd), light regime (Lc), salt regime (Sl). We revealed no significant differences on these ecofactors among ecotopes of our syntaxa, that proved the variant syntaxonomic rank for all syntaxa. We found that the core of species composition of our phytocenoses consists of plants with moderate requirements for moisture, soil nitrogen, light and salt regime. We prove that the leading factor of syntaxonomic differentiation is hidden anthropogenic, which is not subject to direct measurement. But we detect that hidden factor of "human pressure" was correlated with phytoindication parameters (variables) that can be measured "directly" by species composition of plant communities. The most correlated factors were ecofactors of soil nitrogen, wetting variability, light regime and hemeroby. The last one is the most indicative empirically for the assessment of "human impact". We establish that there is a concept of «hemeroby of phytocenosis» (tolerance to human impact), which can be calculated approximately as the mean or the median of hemeroby scores of individual species which are present in it.


2017 ◽  
Vol 28 (1-2) ◽  
pp. 28-35 ◽  
Author(s):  
B. A. Baranovski

Nowadays, bioecological characteristics of species are the basis for flora and vegetation studying on the different levels. Bioecological characteristics of species is required in process of flora studying on the different levels such as biotopes or phytocenoses, floras of particular areas (floras of ecologically homogeneous habitats), and floras of certain territories. Ramensky scale is the one of first detailed ecological scales on plant species ordination in relation to various environmental factors; it developed in 1938 (Ramensky, 1971). A little later (1941), Pogrebnyak’s scale of forest stands was proposed. Ellenberg’s system developed in 1950 (Ellenberg, 1979) and Tsyganov’s system (Tsyganov, 1975) are best known as the systems of ecological scales on vascular plant species; these systems represent of habitat detection by ecotopic ecomorphs of plant species (phytoindication). Basically, the system proposed by Alexander Lyutsianovich Belgard was the one of first system of plant species that identiified ectomorphs in relation to environmental factors. As early as 1950, Belgard developed the tabulated system of ecomorphs using the Latin ecomorphs abbreviation; he also used the terminology proposed in the late 19th century by Dekandol (1956) and Warming (1903), as well as terminology of other authors. The article analyzes the features of Belgard’s system of ecomorphs on vascular plants. It has certain significance and advantages over other systems of ecomorphs. The use of abbreviated Latin names of ecomorphs in tabular form enables the use shortened form of ones. In the working scheme of Belgard’s system of ecomorphs relation of species to environmental factors are represented in the abbreviated Latin alphabetic version (Belgard, 1950). Combined into table, the ecomorphic analysis of plant species within association (ecological certification of species), biotope or area site (water area) gives an explicit pattern on ecological structure of flora within surveyed community, biotope or landscape, and on environmental conditions. Development and application by Belgrard the cenomorphs as «species’ adaptation to phytocenosis as a whole» were completely new in the development of systems of ecomorphs and, in this connection, different coenomorphs were distinguished. Like any concept, the system of ecomorphs by Belgard has the possibility and necessity to be developed and added. Long-time researches and analysis of literature sources allow to propose a new coenomorph in the context of Belgard’s system of ecomorphs development: silvomargoant (species of forest margin, from the Latin words margo – edge, boundary (Dvoretsky, 1976), margo – margin, ad margins silvarum – along the deciduous forest margins). As an example of ecomorphic characterization of species according to the system of ecomorphs by Belgard (when the abbreviated Latin ecomorph names are used in tabular form and the proposed cenomorph is used), it was given the part of the table on vascular plants ecomorphs in the National Nature Park «Orelsky» (Baranovsky et al). The Belgard’s system of ecomorphs is particularly convenient and can be successfully applied to data processing in the ecological analysis of the flora on wide areas with significant species richness, and the proposed ecomorph will be another necessary element in the Belgard’s system of ecomorphs. 


Sign in / Sign up

Export Citation Format

Share Document