scholarly journals Approximating the Influence of Monotone Boolean Functions in $O(\sqrt{n})$ Query Complexity

Author(s):  
Dana Ron ◽  
Ronitt Rubinfeld ◽  
Muli Safra ◽  
Omri Weinstein
2012 ◽  
Vol 4 (4) ◽  
pp. 1-12 ◽  
Author(s):  
Dana Ron ◽  
Ronitt Rubinfeld ◽  
Muli Safra ◽  
Alex Samorodnitsky ◽  
Omri Weinstein

2015 ◽  
pp. 435-452
Author(s):  
Andris Ambainis ◽  
Jozef Gruska ◽  
Shenggen Zheng

It has been proved that almost all n-bit Boolean functions have exact classical query complexity n. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all n-bit Boolean functions can be computed by an exact quantum algorithm with less than n queries. More exactly, we prove that ANDn is the only n-bit Boolean function, up to isomorphism, that requires n queries.


2001 ◽  
Vol 12 (04) ◽  
pp. 491-516
Author(s):  
M. SITHARAM ◽  
TIMOTHY STRANEY

We employ the Always Approximately Correct or AAC model defined in [35], to prove learnability results for classes of Boolean functions over arbitrary finite Abelian groups. This model is an extension of Angluin's Query model of exact learning. The Boolean functions we consider belong to approximation classes, i.e. functions that are approximable (in various norms) by few Fourier basis functions, or irreducible characters of the domain Abelian group. We contrast our learnability results to previous results for similar classes in the PAC model of learning with and without membership queries. In addition, we discuss new, natural issues and questions that arise when the AAC model is used. One such question is whether a uniform training set is available for learning any function in a given approximation class. No analogous question seems to have been studied in the context of Angluin's Query model. Another question is whether the training set can be found quickly if the approximation class of the function is completely unknown to the learner, or only partial information about the approximation class is given to the learner (in addition to the answers to membership queries). In order to prove the learnability results in this paper we require new techniques for efficiently sampling Boolean functions using the character theory of finite Abelian groups, as well as the development of algebraic algorithms. The techniques result in other natural applications closely related to learning, for example, query complexity of deterministic algorithms for testing linearity, efficient pseudorandom generators, and estimating VC dimensions for classes of Boolean functions over finite Abelian groups.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 1035
Author(s):  
Ilya Shmulevich

Boolean networks are discrete dynamical systems comprised of coupled Boolean functions. An important parameter that characterizes such systems is the Lyapunov exponent, which measures the state stability of the system to small perturbations. We consider networks comprised of monotone Boolean functions and derive asymptotic formulas for the Lyapunov exponent of almost all monotone Boolean networks. The formulas are different depending on whether the number of variables of the constituent Boolean functions, or equivalently, the connectivity of the Boolean network, is even or odd.


2014 ◽  
Vol 167 ◽  
pp. 15-24 ◽  
Author(s):  
Tamon Stephen ◽  
Timothy Yusun

Sign in / Sign up

Export Citation Format

Share Document