small perturbations
Recently Published Documents


TOTAL DOCUMENTS

863
(FIVE YEARS 173)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Vol 54 (8) ◽  
pp. 1-36
Author(s):  
Xingwei Zhang ◽  
Xiaolong Zheng ◽  
Wenji Mao

Deep neural networks (DNNs) have been verified to be easily attacked by well-designed adversarial perturbations. Image objects with small perturbations that are imperceptible to human eyes can induce DNN-based image class classifiers towards making erroneous predictions with high probability. Adversarial perturbations can also fool real-world machine learning systems and transfer between different architectures and datasets. Recently, defense methods against adversarial perturbations have become a hot topic and attracted much attention. A large number of works have been put forward to defend against adversarial perturbations, enhancing DNN robustness against potential attacks, or interpreting the origin of adversarial perturbations. In this article, we provide a comprehensive survey on classical and state-of-the-art defense methods by illuminating their main concepts, in-depth algorithms, and fundamental hypotheses regarding the origin of adversarial perturbations. In addition, we further discuss potential directions of this domain for future researchers.


MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 601-608
Author(s):  
ABHINAV SRIVASTAVA ◽  
I.M.L. DAS ◽  
SANDIP R.OZA ◽  
AMITABH MITRA ◽  
MIHIRKUMAR DASH ◽  
...  

Sea ice governs the fluxes of heat, moisture and momentum across the ocean-atmosphere interface. Because it is thin, sea ice is vulnerable to small perturbations within the ocean and the atmosphere, which considerably change the extent and thickness of the polar ice cover. Thus, sea ice is a climate change indicator. The DMSP SSM/I monthly ice concentration data over the Antarctic region have used to calculate the monthly sea ice extents (August to February) for each year during 1988-2006. Melting rates based on seasonal cycle of solar irradiance as well as the SSM/I data have been calculated. Compared to the melting rates based on seasonal cycle of solar irradiance, the SSM/I estimated melting rate, is less in the beginning of September and increases to its peak value by the end of December. The observed melting rate behaviour indicates that apart from the seasonal cycle of solar irradiance, it is controlled by other mechanisms also. The present study estimates the feedback impact factor, response time, accelerating and decelerating melting rate duration for the period 1988-2006.


2021 ◽  
pp. 107754632110579
Author(s):  
Govind N. Sahu ◽  
Mohit Law ◽  
Pankaj Wahi

Interruptions in turning make the process forces non-smooth and nonlinear. Smooth nonlinear cutting forces result in the process of being stable for small perturbations and unstable for larger ones. Re-entry after interruptions acts as perturbations making the process exhibit bistabilities. Stability for such processes is characterized by Hopf bifurcations resulting in lobes and period-doubling bifurcations resulting in narrow unstable lenses. Interrupted turning remains an important technological problem, and since experimentation to investigate and mitigate instabilities are difficult, this paper instead emulates these phenomena on a controlled hardware-in-the-loop simulator. Emulated cutting on the simulator confirms that bistabilities persist with lobes and lenses. Cutting in bistable regimes should be avoided due to conditional stability. Hence, we demonstrate the use of active damping to stabilize cutting with interruptions/perturbations. To stabilize cutting with small/large perturbations, we successfully implement an adaptive gain tuning scheme that adapts the gain to the level of interruption/perturbation. To facilitate real-time detection of instabilities and their control, we characterize the efficacy of the updating scheme for its dependence on the time required to update the gain and for its dependence on the levels of gain increments. We observe that higher gain increments with shorter updating times result in the process being stabilized quicker. Such results are instructive for active damping of real processes exhibiting conditional instabilities prone to perturbations.


2021 ◽  
pp. 1-18
Author(s):  
Lawrie Virgin

Abstract This paper presents a new approach to predicting an incipient critical speed in a rotating shaft. Based on the classical governing equations of motion for an eccentric mass on a flexible shaft (the Jeffcott rotor model), the approach is centered on examining the behavior of small perturbations or random disturbances to infer the approach of a critical speed (resonance). Such disturbances, that may be based on intentional probing, or simply the result of naturally occurring fluctuations, cause small transients. It is the changing nature of these transients (as characterized by their associated eigenvalues) that is used to assess the proximity to a critical speed. In this paper the material developed is based on analysis, but generating the data from simulations or experiments will be the next step. The approach is a kind of stress-test, conceptually not dissimilar to structural health monitoring and damage detection, but here directed toward the lead-up to resonance.


2021 ◽  
Author(s):  
S. K. Zhao ◽  
Zi-Yong Ge ◽  
Zhongcheng Xiang ◽  
G. M. Xue ◽  
H. S. Yan ◽  
...  

Abstract The Loschmidt echo is a useful diagnostic for the perfection of quantum time-reversal process and the sensitivity of quantum evolution to small perturbations. The main challenge for measuring the Loschmidt echo is the time reversal of a quantum evolution. In this work, we demonstrate the measurement of the Loschmidt echo in a superconducting 10-qubit system using Floquet engineering and discuss the imperfection of an initial Bell-state recovery arising from the next-nearest-neighbour (NNN) coupling present in the qubit device. Our results show that the Loschmidt echo is very sensitive to small perturbations during quantum-state evolution, in contrast to the quantities like qubit population that is often considered in the time-reversal experiment. These properties may be employed for the investigation of multiqubit system concerning many-body decoherence and entanglement, etc., especially when devices with reduced or vanishing NNN coupling are used.


Author(s):  
Jinfeng Li ◽  
Helen J. Huang

Introducing unexpected perturbations to challenge gait stability is an effective approach to investigate balance control strategies. Little is known about the extent to which people can respond to small perturbations during walking. This study aimed to determine how subjects adapted gait stability to multidirectional perturbations with small magnitudes applied on a stride-by-stride basis. Ten healthy young subjects walked on a treadmill that either briefly decelerated belt speed ("stick"), accelerated belt speed ("slip"), or shifted the platform medial-laterally at right leg mid-stance. We quantified gait stability adaptation in both anterior-posterior and medial-lateral directions using margin of stability and its components, base of support and extrapolated center of mass. Gait stability was disrupted upon initially experiencing the small perturbations as margin of stability decreased in the stick, slip, and medial shift perturbations and increased in the lateral shift perturbation. Gait stability metrics were generally disrupted more for perturbations in the coincident direction. Subjects employed both feedback and feedforward strategies in response to the small perturbations, but mostly used feedback strategies during adaptation. Subjects primarily used base of support (foot placement) control in the lateral shift perturbation and extrapolated center of mass control in the slip and medial shift perturbations. These findings provide new knowledge about the extent of gait stability adaptation to small magnitude perturbations applied on a stride-by-stride basis and reveal potential new approaches for balance training interventions to target foot placement and center of mass control.


2021 ◽  
Author(s):  
Paolo Redoblado ◽  
Sarwan Kumar ◽  
Abhikesh Kumar ◽  
Sushil Kumar

Abstract In this paper, we present the D-region ionospheric response during the lifespan (10–19 December 2020) of a severe category 5 tropical cyclone (TC) Yasa in the South Pacific by using the very low frequency (VLF, 3-30 kHz) signals from NPM, NLK, and JJI transmitters recorded at Suva, Fiji. Results indicate enhanced lightning and convective activity in all three regions (eyewall, inner rainbands, and outer rainbands) during the TC Yasa that are also linked to the wave sensitive zones of these transmitter-receiver great circle paths. Of the three regions, the outer rainbands showed the maximum lightning occurrence; hence convective activity. Prominent eyewall lightning was observed just before the TC started to weaken following its peak intensity. Analysis of VLF signal amplitudes showed both negative and positive perturbations (amplitudes exceeding ±3σ mark) lasting for more than 2 hours with maximum change in the daytime and nighttime signal amplitudes of -4.9 dB (NPM) and -19.8 dB (NLK), respectively. The signal perturbations were wave-like, exhibiting periods of oscillations between ~2.2-5.5 hours as revealed by the Morlet wavelet analysis. Additionally, the LWPC modeling of the signal perturbations indicated a 10 km increase in daytime D-region reference height, H¢, and a 12 km decrease in nighttime D-region H¢ during TC Yasa. The D-region density gradients (sharpness), b, showed small perturbations of 0.01–0.14 km-1 from its normal values. We suggest that the observed changes to the D-region parameters are due to the enhanced convection during TC Yasa which excites atmospheric gravity waves producing travelling ionospheric disturbances to the D-region.


2021 ◽  
pp. 1-26
Author(s):  
M.M. Freitas ◽  
A.J.A. Ramos ◽  
M.J. Dos Santos ◽  
L.G.R. Miranda ◽  
J.L.L. Almeida

We investigated the asymptotic dynamics of a nonlinear system modeling binary mixture of solids with delay term. Using the recent quasi-stability methods introduced by Chueshov and Lasiecka, we prove the existence, smoothness and finite dimensionality of a global attractor. We also prove the existence of exponential attractors. Moreover, we study the upper semicontinuity of global attractors with respect to small perturbations of the delay terms.


Sign in / Sign up

Export Citation Format

Share Document