Towards Adaptive Classification of Motor Imagery EEG Using Biomimetic Pattern Recognition

Author(s):  
Yanbin Ge ◽  
Yan Wu
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Minmin Miao ◽  
Wenjun Hu ◽  
Hongwei Yin ◽  
Ke Zhang

EEG pattern recognition is an important part of motor imagery- (MI-) based brain computer interface (BCI) system. Traditional EEG pattern recognition algorithm usually includes two steps, namely, feature extraction and feature classification. In feature extraction, common spatial pattern (CSP) is one of the most frequently used algorithms. However, in order to extract the optimal CSP features, prior knowledge and complex parameter adjustment are often required. Convolutional neural network (CNN) is one of the most popular deep learning models at present. Within CNN, feature learning and pattern classification are carried out simultaneously during the procedure of iterative updating of network parameters; thus, it can remove the complicated manual feature engineering. In this paper, we propose a novel deep learning methodology which can be used for spatial-frequency feature learning and classification of motor imagery EEG. Specifically, a multilayer CNN model is designed according to the spatial-frequency characteristics of MI EEG signals. An experimental study is carried out on two MI EEG datasets (BCI competition III dataset IVa and a self-collected right index finger MI dataset) to validate the effectiveness of our algorithm in comparison with several closely related competing methods. Superior classification performance indicates that our proposed method is a promising pattern recognition algorithm for MI-based BCI system.


2013 ◽  
Vol 133 (3) ◽  
pp. 635-641
Author(s):  
Genzo Naito ◽  
Lui Yoshida ◽  
Takashi Numata ◽  
Yutaro Ogawa ◽  
Kiyoshi Kotani ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Fernando Leonel Aguirre ◽  
Nicolás M. Gomez ◽  
Sebastián Matías Pazos ◽  
Félix Palumbo ◽  
Jordi Suñé ◽  
...  

In this paper, we extend the application of the Quasi-Static Memdiode model to the realistic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) intended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance values.


Sign in / Sign up

Export Citation Format

Share Document