Evaluation of a Self-adapting Method for Resource Classification in Folksonomies

Author(s):  
José Javier Astrain ◽  
Alberto Córdoba ◽  
Francisco Echarte ◽  
Jesús Villadangos
Author(s):  
Nicola Fanizzi ◽  
Claudia d’Amato ◽  
Floriana Esposito

The tasks of resource classification and retrieval from knowledge bases in the Semantic Web are the basis for a lot of important applications. In order to overcome the limitations of purely deductive approaches to deal with these tasks, inductive (instance-based) methods have been introduced as efficient and noise-tolerant alternatives. In this paper we propose an original method based on a non-parametric learning scheme: the Reduced Coulomb Energy (RCE) Network. The method requires a limited training effort but it turns out to be very effective during the classification phase. Casting retrieval as the problem of assessing the classmembership of individuals w.r.t. the query concepts, we propose an extension of a classification algorithm using RCE networks based on an entropic similarity measure for OWL. Experimentally we show that the performance of the resulting inductive classifier is comparable with the one of a standard reasoner and often more efficient than with other inductive approaches. Moreover, we show that new knowledge (not logically derivable) is induced and the likelihood of the answers may be provided.


Sign in / Sign up

Export Citation Format

Share Document