In Vivo Reflectance Confocal Microscopy for Inflammatory Skin Diseases’ Assessment

Author(s):  
Marco Ardigò ◽  
Marina Agozzino ◽  
Leonardo Abraham
2020 ◽  
pp. e2020032
Author(s):  
Chiara Franceschini ◽  
Flavia Persechino ◽  
Marco Ardigò

Reflectance confocal microscopy (RCM) is a high-resolution, noninvasive imaging technique being increasingly used as an aid to diagnosis in the dermatology setting. RCM is applied in the diagnosis of both melanoma and nonmelanoma skin tumors, but also in the interpretation and management of inflammatory skin diseases. Two different devices with different designs for specific indications are available in the market: a static and a handheld probe. Several clinical presentations of the lesion could affect the examination, such as the presence of ulceration or hyperkeratosis; moreover, the anatomical site can drive the probe selection as well as the effective indication to RCM examination. In this review article, indications for the use of RCM are described in detail with a schematic approach for practical purposes.  


2015 ◽  
Vol 24 (12) ◽  
pp. 980-982 ◽  
Author(s):  
Tiziana Petrachi ◽  
Roberta Lotti ◽  
Elisabetta Palazzo ◽  
Francesca Truzzi ◽  
Annalisa Saltari ◽  
...  

2015 ◽  
Vol 2 ◽  
pp. 103-108 ◽  
Author(s):  
Kamila Białek-Galas ◽  
Dorota Wielowieyska-Szybińska ◽  
Grzegorz Dyduch ◽  
Anna Wojas-Pelc

2021 ◽  
Vol 22 (15) ◽  
pp. 8237
Author(s):  
Chung-Chi Yang ◽  
Yen-Ling Hung ◽  
Wen-Chin Ko ◽  
Yi-Ju Tsai ◽  
Jia-Feng Chang ◽  
...  

Atopic dermatitis (AD) is a chronic and persistent inflammatory skin disease characterized by eczematous lesions and itching, and it has become a serious health problem. However, the common clinical treatments provide limited relief and are accompanied by adverse effects. Therefore, there is a need to develop novel and effective therapies to treat AD. Neferine is a small molecule compound isolated from the green embryo of the mature seeds of lotus (Nelumbo nucifera). It has a bisbenzylisoquinoline alkaloid structure. Relevant studies have shown that neferine has many pharmacological and biological activities, including anti-inflammatory, anti-thrombotic, and anti-diabetic activities. However, there are very few studies on neferine in the skin, especially the related effects on inflammatory skin diseases. In this study, we proved that it has the potential to be used in the treatment of atopic dermatitis. Through in vitro studies, we found that neferine inhibited the expression of cytokines and chemokines in TNF-α/IFN-γ-stimulated human keratinocyte (HaCaT) cells, and it reduced the phosphorylation of MAPK and the NF-κB signaling pathway. Through in vivo experiments, we used 2,4-dinitrochlorobenzene (DNCB) to induce atopic dermatitis-like skin inflammation in a mouse model. Our results show that neferine significantly decreased the skin barrier damage, scratching responses, and epidermal hyperplasia induced by DNCB. It significantly decreased transepidermal water loss (TEWL), erythema, blood flow, and ear thickness and increased surface skin hydration. Moreover, it also inhibited the expression of cytokines and the activation of signaling pathways. These results indicate that neferine has good potential as an alternative medicine for the treatment of atopic dermatitis or other skin-related inflammatory diseases.


Author(s):  
Lize Delanghe ◽  
Irina Spacova ◽  
Joke Van Malderen ◽  
Eline Oerlemans ◽  
Ingmar Claes ◽  
...  

The human skin microbiota forms a key barrier against skin pathogens and is important in modulating immune responses. Recent studies identify lactobacilli as endogenous inhabitants of healthy skin, while inflammatory skin conditions are often associated with a disturbed skin microbiome. Consequently, lactobacilli-based probiotics are explored as a novel treatment of inflammatory skin conditions through their topical skin application. This review focuses on the potential beneficial role of lactobacilli (family Lactobacillaceae) in the skin habitat, where they can exert multifactorial local mechanisms of action against pathogens and inflammation. On one hand, lactobacilli have been shown to directly compete with skin pathogens through adhesion inhibition, production of antimicrobial metabolites, and by influencing pathogen metabolism. The competitive anti-pathogenic action of lactobacilli has already been described mechanistically for common different skin pathogens, such as Staphylococcus aureus, Cutibacterium acnes, and Candida albicans. On the other hand, lactobacilli also have an immunomodulatory capacity associated with a reduction in excessive skin inflammation. Their influence on the immune system is mediated by bacterial metabolites and cell wall-associated or excreted microbe-associated molecular patterns (MAMPs). In addition, lactobacilli can also enhance the skin barrier function, which is often disrupted as a result of infection or in inflammatory skin diseases. Some clinical trials have already translated these mechanistic insights into beneficial clinical outcomes, showing that topically applied lactobacilli can temporarily colonize the skin and promote skin health, but more and larger clinical trials are required to generate in vivo mechanistic insights and in-depth skin microbiome analysis.


Sign in / Sign up

Export Citation Format

Share Document